A274600 Coefficients in an asymptotic expansion of sequence A002893.
1, -1, 1, 2, 7, 59, 616, 6992, 90847, 1352549, 22591681, 417527582, 8465505412, 186906393764, 4463901355096, 114672825810272, 3153127461349327, 92405864554182329, 2875362251645606611, 94680648376734042062, 3289274269898822961967, 120235993277078434540619
Offset: 0
Keywords
Examples
A002893(n) ~ 3^(2*n+3/2)/(4*Pi*n) * (1 - 1/(4*n) + 1/(4*n)^2 + 2/(4*n)^3 + 7/(4*n)^4 + 59/(4*n)^5 + ...)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..80
- Mathematics.StackExchange, sum involving the product of binomial coefficients, Nov 10 2016.
Crossrefs
Cf. A002893.
Formula
Conjecture: a(n) ~ (2/log(3))^n * (n-1)! / (Pi*sqrt(3)).