A274660 Irregular triangle read by rows in which row n lists the divisors d of 2*n+1 (A274658), given the sign (-1)^(n + (d-1)/2).
1, -1, 3, 1, 5, -1, 7, 1, -3, 9, -1, 11, 1, 13, -1, 3, -5, 15, 1, 17, -1, 19, 1, -3, -7, 21, -1, 23, 1, 5, 25, -1, 3, -9, 27, 1, 29, -1, 31, 1, -3, -11, 33, -1, -5, 7, 35, 1, 37, -1, 3, -13, 39, 1, 41, -1, 43, 1, -3, 5, 9, -15, 45, -1, 47, 1, -7, 49, -1, 3, -17, 51, 1, 53, -1, -5, 11, 55, 1, -3, -19, 57, -1, 59, 1, 61
Offset: 0
Examples
The irregular triangle T(n, k) begins: n, 2n+1\k 1 2 3 4 ... 0, 1: 1 1, 3: -1 3 2, 5: 1 5 3, 7: -1 7 4, 9: 1 -3 9 5, 11: -1 11 6, 13: 1 13 7, 15: -1 3 -5 15 8, 17: 1 17 9, 19: -1 19 10, 21: 1 -3 -7 21 11, 23: -1 23 12, 25: 1 5 25 13, 27: -1 3 -9 27 14, 29: 1 29 15, 31: -1 31 16, 33: 1 -3 -11 33 17, 35: -1 -5 7 35 18, 37: 1 37 19, 39: -1 3 -13 39 20, 41: 1 41 ... The above mentioned expansion coefficient of q^4 of the second factor of the cn formula is +cos(1*v) - cos(3*v) + cos(9*v).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..12574 (0 <= n <= 2500)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972,
Programs
-
Mathematica
Table[(-1)^(n + (# - 1)/2) # &@ Divisors[2 n + 1], {n, 0, 30}] // Flatten (* Michael De Vlieger, Aug 01 2016 *)
Formula
T(n, k) = (-1)^(n + (d(k)-1)/2)*d(k) with d(k) the k-th divisor of 2*n+1 in increasing order.
Comments