A274659 Triangle entry T(n, m) gives the m-th contribution T(n, m)*sin((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic sn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.
1, 1, 1, -1, 0, 1, -1, -2, 0, 1, 2, 1, -2, 0, 1, 2, 3, 0, -2, 0, 1, -4, -2, 3, 0, -2, 0, 1, -4, -5, 1, 3, 0, -2, 0, 1, 7, 3, -6, 0, 3, 0, -2, 0, 1, 7, 9, -2, -6, 0, 3, 0, -2, 0, 1, -11, -5, 11, 1, -6, 0, 3, 0, -2, 0, 1, -11, -15, 3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, 9, -17, -2, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0
Examples
The triangle T(n, m) begins: m 0 1 2 3 4 5 6 7 8 9 10 11 n\ 2m+1 1 3 5 7 9 11 13 15 17 19 21 23 0: 1 1: 1 1 2: -1 0 1 3: -1 -2 0 1 4: 2 1 -2 0 1 5: 2 3 0 -2 0 1 6: -4 -2 3 0 -2 0 1 7: -4 -5 1 3 0 -2 0 1 8: 7 3 -6 0 3 0 -2 0 1 9: 7 9 -2 -6 0 3 0 -2 0 1 10: -11 -5 11 1 -6 0 3 0 -2 0 1 11: -11 -15 3 11 0 -6 0 3 0 -2 0 1 ... T(4, 0) = 2 from the x^1 term in b(0, x)*a(4) + b(2, x)*a(2) + b(4, x)*a(0), that is x^1*3 + x^1*(-2) + x^1*1 = +2*x^1. n=4: R(4, x) = 2*x^1 + 1*x^3 - 2*x^5 + 0*x^7 + 1*x^9, that is the sn(u|k) contribution of order q^4 in the new variables v and q is (2*sin(1*v) + 1*sin(3*v) - 2*sin(5*v) + 1*sin(9*v))*q^4.
References
- J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 375, 16.23.1.
- Wolfdieter Lang, Expansions for phase space coordinates for the plane pendulum
Comments