A274661 Triangle read by rows: T(n, m) gives the m-th contribution T(n, m)*cos((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic cn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.
1, -1, 1, -1, 0, 1, 1, -2, 0, 1, 2, -1, -2, 0, 1, -2, 3, 0, -2, 0, 1, -4, 2, 3, 0, -2, 0, 1, 4, -5, -1, 3, 0, -2, 0, 1, 7, -3, -6, 0, 3, 0, -2, 0, 1, -7, 9, 2, -6, 0, 3, 0, -2, 0, 1, -11, 5, 11, -1, -6, 0, 3, 0, -2, 0, 1, 11, -15, -3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, -9, -17, 2, 11, 0, -6, 0, 3, 0, -2, 0, 1, -17, 23, 6, -18, -1, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0
Examples
The triangle T(n, m) begins: m 0 1 2 3 4 5 6 7 8 9 10 11 n\ 2m+1 1 3 5 7 9 11 13 15 17 19 21 23 0: 1 1: -1 1 2: -1 0 1 3: 1 -2 0 1 4: 2 -1 -2 0 1 5: -2 3 0 -2 0 1 6: -4 2 3 0 -2 0 1 7: 4 -5 -1 3 0 -2 0 1 8: 7 -3 -6 0 3 0 -2 0 1 9: -7 9 2 -6 0 3 0 -2 0 1 10: -11 5 11 -1 -6 0 3 0 -2 0 1 11: 11 -15 -3 11 0 -6 0 3 0 -2 0 1 ... n = 4: c(0, x)*a(4) + c(2, x)*a(2) + c(4, x)*a(0) = (+x^1)*3 + (+x^1 + x^5)*(-2) + (+x^1 - x^3 + x^9)*1 = +2*x^1 - x^3 - 2*x^5 + 0*x^7 + x^9. Hence row n=4 is 2, -1, -2, 0, 1. From A274660, row n = 4: c(4, x) = +x^1 - x^3 +x^9. n = 4: P(4, x) = 2 - 1*x^1 - 2*x^2 + 1*x^4, that is the contribution of order q^4 to cn in the new variables is (2*cos(v) - 1*cos(3*v) - 2*cos(5*v) + 1*cos(9*v))*q^4.
References
- J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, Theorem 3.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 375, 16.23.2.
- Wolfdieter Lang, Expansions for phase space coordinates for the plane pendulum
Comments