A274708 A statistic on orbital systems over n sectors: the number of orbitals with k peaks.
1, 1, 2, 4, 2, 4, 2, 12, 15, 3, 10, 8, 2, 38, 68, 30, 4, 26, 30, 12, 2, 121, 272, 183, 49, 5, 70, 104, 60, 16, 2, 384, 1026, 912, 372, 72, 6, 192, 350, 260, 100, 20, 2, 1214, 3727, 4095, 2220, 650, 99, 7, 534, 1152, 1050, 520, 150, 24, 2, 3822, 13200, 17178, 11600, 4510, 1032, 130, 8
Offset: 0
Examples
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1. [ n] [k=0,1,2,...] [row sum] [ 0] [ 1] 1 [ 1] [ 1] 1 [ 2] [ 2] 2 [ 3] [ 4, 2] 6 [ 4] [ 4, 2] 6 [ 5] [ 12, 15, 3] 30 [ 6] [ 10, 8, 2] 20 [ 7] [ 38, 68, 30, 4] 140 [ 8] [ 26, 30, 12, 2] 70 [ 9] [121, 272, 183, 49, 5] 630 [10] [ 70, 104, 60, 16, 2] 252 [11] [384, 1026, 912, 372, 72, 6] 2772 [12] [192, 350, 260, 100, 20, 2] 924 T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks.
Links
- Peter Luschny, Orbitals
Crossrefs
Programs
-
Sage
# uses[unit_orbitals from A274709] # Brute force counting def orbital_peaks(n): if n == 0: return [1] S = [0]*((n+1)//2) for u in unit_orbitals(n): L = [1 if sgn(u[i]) < sgn(u[i+1]) and sgn(u[i+1]) > sgn(u[i+2]) else 0 for i in (0..n-3)] S[sum(L)] += 1 return S for n in (0..12): print(orbital_peaks(n))
Comments