A274710 A statistic on orbital systems over n sectors: the number of orbitals which make k turns.
1, 1, 0, 2, 0, 0, 6, 0, 2, 2, 2, 0, 0, 6, 12, 12, 0, 2, 4, 8, 4, 2, 0, 0, 6, 24, 52, 40, 18, 0, 2, 6, 18, 18, 18, 6, 2, 0, 0, 6, 36, 120, 180, 180, 84, 24, 0, 2, 8, 32, 48, 72, 48, 32, 8, 2, 0, 0, 6, 48, 216, 480, 744, 672, 432, 144, 30, 0, 2, 10, 50, 100, 200, 200, 200, 100, 50, 10, 2
Offset: 0
Examples
Triangle read by rows, n>=0. The length of row n is n for n>=1. [n] [k=0,1,2,...] [row sum] [0] [1] 1 [1] [1] 1 [2] [0, 2] 2 [3] [0, 0, 6] 6 [4] [0, 2, 2, 2] 6 [5] [0, 0, 6, 12, 12] 30 [6] [0, 2, 4, 8, 4, 2] 20 [7] [0, 0, 6, 24, 52, 40, 18] 140 [8] [0, 2, 6, 18, 18, 18, 6, 2] 70 [9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630 T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns.
Links
- Peter Luschny, Orbitals
Crossrefs
Programs
-
Sage
# uses[unit_orbitals from A274709] # Brute force counting def orbital_turns(n): if n == 0: return [1] S = [0]*(n) for u in unit_orbitals(n): L = sum(0 if sgn(u[i]) == sgn(u[i+1]) else 1 for i in (0..n-2)) S[L] += 1 return S for n in (0..12): print(orbital_turns(n))
Formula
For even n>0: T(n,k) = 2*C(n/2-1,(k-1+mod(k-1,2))/2)*C(n/2-1,(k-1-mod(k-1,2))/2) for k=0..n-1 (from A152659).
Comments