A274756 Values of n such that 2*n+1 and 6*n+1 are both triangular numbers.
0, 945, 13167, 35578242, 495540990, 1338951572595, 18649189618605, 50390103447476100, 701843601611053692, 1896381151803363988917, 26413182084381205040235, 71368408216577696911440390, 994033693861758668873164410, 2685878672926303893761783662455
Offset: 1
Examples
945 is in the sequence because 2*945+1 = 1891, 6*945+1 = 5671, and 1891 and 5671 are both triangular numbers.
Links
- Colin Barker, Table of n, a(n) for n = 1..400
- Index entries for linear recurrences with constant coefficients, signature (1,37634,-37634,-1,1).
Crossrefs
Programs
-
PARI
isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(6*n+1, 3)
-
PARI
concat(0, Vec(63*x^2*(15+194*x+15*x^2)/((1-x)*(1-194*x+x^2)*(1+194*x+x^2)) + O(x^20)))
Formula
G.f.: 63*x^2*(15+194*x+15*x^2) / ((1-x)*(1-194*x+x^2)*(1+194*x+x^2)).
a(n) = a(n-1)+37634*a(n-2)-37634*a(n-3)-a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 24 2021
Comments