cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274759 Modified quadranacci series.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 12, 14, 15, 23, 27, 29, 44, 52, 56, 85, 100, 108, 164, 193, 208, 316, 372, 401, 609, 717, 773, 1174, 1382, 1490, 2263, 2664, 2872, 4362, 5135, 5536, 8408, 9898, 10671, 16207, 19079, 20569, 31240, 36776, 39648, 60217, 70888, 76424, 116072, 136641
Offset: 0

Views

Author

G. C. Greubel, Jul 04 2016

Keywords

Crossrefs

Cf. A213816.

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12), {x, 0, 25}], x] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0, 1,0,0,1},{0,1,1,1,1,2,2,2,3,4,4,6}, 50]
  • PARI
    concat(0, Vec(x*(1+x+x^2+x^4+x^5+x^8)/(1-x^3-x^6-x^9-x^12) + O(x^99))) \\ Altug Alkan, Jul 04 2016

Formula

a(3n) = a(3n-3) + a(3n-6) + a(3n-9) + a(3n-12).
a(3n + 2) = a(3n + 1) + a(3n - 2).
a(3n + 3) = a(3n + 1) + a(3n - 1).
a(3n + 4) = a(3n + 1) + a(3n).
G.f.: x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12).