A274759 Modified quadranacci series.
0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 12, 14, 15, 23, 27, 29, 44, 52, 56, 85, 100, 108, 164, 193, 208, 316, 372, 401, 609, 717, 773, 1174, 1382, 1490, 2263, 2664, 2872, 4362, 5135, 5536, 8408, 9898, 10671, 16207, 19079, 20569, 31240, 36776, 39648, 60217, 70888, 76424, 116072, 136641
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ian Bruce, A Modified Tribonacci Sequence, The Fibonacci Quarterly 22, no.3 (1984):244-246
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,1,0,0,1,0,0,1).
Crossrefs
Cf. A213816.
Programs
-
Mathematica
CoefficientList[Series[x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12), {x, 0, 25}], x] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0, 1,0,0,1},{0,1,1,1,1,2,2,2,3,4,4,6}, 50]
-
PARI
concat(0, Vec(x*(1+x+x^2+x^4+x^5+x^8)/(1-x^3-x^6-x^9-x^12) + O(x^99))) \\ Altug Alkan, Jul 04 2016
Formula
a(3n) = a(3n-3) + a(3n-6) + a(3n-9) + a(3n-12).
a(3n + 2) = a(3n + 1) + a(3n - 2).
a(3n + 3) = a(3n + 1) + a(3n - 1).
a(3n + 4) = a(3n + 1) + a(3n).
G.f.: x*(1 + x + x^2 + x^4 + x^5 + x^8)/(1 - x^3 - x^6 - x^9 - x^12).