A274770 Cube analog to Keith numbers.
1, 8, 17, 18, 26, 27, 44, 55, 63, 80, 105, 187, 326, 776, 1095, 2196, 6338, 13031, 13131, 25562, 27223, 70825, 140791, 553076, 632489, 1402680, 1404312, 3183253, 11311424, 50783292, 51231313, 182252596, 255246098, 522599548, 1180697763, 2025114819, 2137581414
Offset: 1
Examples
776^3 = 467288576 : 4 + 6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 = 53; 6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 = 102; 7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 = 198; 2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 = 389; 8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 + 389 = 776.
Programs
-
Maple
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h); for n from 1 to q do b:=n^3; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^3)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a274770[n_] := Join[{1, 8}, Select[Range[10, n], keithQ[#, 3]&]] a274770[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
Extensions
a(34)-a(37) from Giovanni Resta, Jul 08 2016
Comments