cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274835 Number A(n,k) of set partitions of [n] such that the difference between each element and its block index is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 3, 52, 1, 1, 1, 1, 1, 2, 7, 203, 1, 1, 1, 1, 1, 1, 3, 14, 877, 1, 1, 1, 1, 1, 1, 2, 4, 39, 4140, 1, 1, 1, 1, 1, 1, 1, 3, 9, 95, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 4, 18, 304, 115975, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2016

Keywords

Examples

			A(3,0) = 1: 1|2|3.
A(3,1) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.
A(5,2) = 7: 135|24, 13|24|5, 15|24|3, 1|24|35, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(7,3) = 9: 147|25|36, 14|25|36|7, 17|25|36|4, 1|25|36|47, 17|2|36|4|5, 1|2|36|47|5, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.
Square array A(n,k) begins:
  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      1,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      2,   1,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,      5,   2,  1,  1, 1, 1, 1, 1, 1, 1, ...
  1,     15,   3,  2,  1, 1, 1, 1, 1, 1, 1, ...
  1,     52,   7,  3,  2, 1, 1, 1, 1, 1, 1, ...
  1,    203,  14,  4,  3, 2, 1, 1, 1, 1, 1, ...
  1,    877,  39,  9,  4, 3, 2, 1, 1, 1, 1, ...
  1,   4140,  95, 18,  5, 4, 3, 2, 1, 1, 1, ...
  1,  21147, 304, 33, 11, 5, 4, 3, 2, 1, 1, ...
  1, 115975, 865, 89, 22, 6, 5, 4, 3, 2, 1, ...
		

Crossrefs

Main diagonal gives A000012.
A(n,ceiling(n/2)) gives A008619.
A(3n,n) gives A094002.

Programs

  • Maple
    b:= proc(n, k, m, t) option remember; `if`(n=0, 1,
         add(`if`(irem(j-t, k)=0, b(n-1, k, max(m, j),
                  irem(t+1, k)), 0), j=1..m+1))
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n, k, 0, 1)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, k_, m_, t_] := b[n, k, m, t] = If[n==0, 1, Sum[If[Mod[j-t, k]==0, b[n-1, k, Max[m, j], Mod[t+1, k]], 0], {j, 1, m+1}]]; A[n_, k_]:= If[k==0, 1, b[n, k, 0, 1]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)