A274841 Number of set partitions of [n] such that the difference between each element and its block index is a multiple of eight.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 38, 73, 136, 247, 438, 757, 1268, 3303, 7883, 17801, 38745, 82179, 170907, 349341, 700517, 2066512, 5768089, 15386070, 39563059, 98692628, 239843745, 569063602, 1318211431, 4290275275, 13443268926
Offset: 0
Keywords
Examples
a(8) = 1: 1|2|3|4|5|6|7|8. a(9) = 2: 19|2|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9. a(10) = 3: 19|2(10)|3|4|5|6|7|8, 1|2(10)|3|4|5|6|7|8|9, 1|2|3|4|5|6|7|8|9|(10).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..902
- Wikipedia, Partition of a set
Crossrefs
Column k=8 of A274835.
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, 1, add(`if`(irem(j-t, 8)=0, b(n-1, max(m, j), irem(t+1, 8)), 0), j=1..m+1)) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..45);
-
Mathematica
b[n_, m_, t_] := b[n, m, t] = If[n == 0, 1, Sum[If[Mod[j - t, 8] == 0, b[n - 1, Max[m, j], Mod[t + 1, 8]], 0], {j, 1, m + 1}]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)