cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274537 Number T(n,k) of set partitions of [n] into k blocks such that each element is contained in a block whose index parity coincides with the parity of the element; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 3, 7, 2, 1, 0, 0, 1, 7, 14, 13, 3, 1, 0, 0, 1, 7, 35, 26, 22, 3, 1, 0, 0, 1, 15, 70, 113, 66, 34, 4, 1, 0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1, 0, 0, 1, 31, 310, 833, 933, 719, 200, 70, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 27 2016

Keywords

Comments

All odd elements are in blocks with an odd index and all even elements are in blocks with an even index.

Examples

			T(6,2) = 1: 135|246.
T(6,3) = 3: 13|246|5, 15|246|3, 1|246|35.
T(6,4) = 7: 13|24|5|6, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46.
T(6,5) = 2: 1|26|3|4|5, 1|2|3|46|5.
T(6,6) = 1: 1|2|3|4|5|6.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1,  1;
  0, 0, 1,  1,   1;
  0, 0, 1,  3,   2,   1;
  0, 0, 1,  3,   7,   2,   1;
  0, 0, 1,  7,  14,  13,   3,   1;
  0, 0, 1,  7,  35,  26,  22,   3,  1;
  0, 0, 1, 15,  70, 113,  66,  34,  4, 1;
  0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1;
  ...
		

Crossrefs

Row sums give A274538.
Columns k=0-10 give: A000007, A000007(n-1), A000012(n-2), A052551(n-3), A274868, A274869, A274870, A274871, A274872, A274873, A274874.
T(2n,n) gives A274875.
Main diagonal and lower diagonals give: A000012, A004526, A002623(n-2) or A173196.
Cf. A364267.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
         `if`(irem(j, 2)=t, b(n-1, max(m, j), 1-t), 0), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0, 1)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n==0, x^m, Sum[If[Mod[j, 2]==t, b[n-1, Max[m, j], 1-t], 0], {j, 1, m+1}]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A364267(n). - Alois P. Heinz, Jul 16 2023
Showing 1-1 of 1 results.