A274870 Number of set partitions of [n] into exactly six blocks such that all odd elements are in blocks with an odd index and all even elements are in blocks with an even index.
1, 3, 22, 66, 311, 933, 3632, 10896, 38337, 115011, 381594, 1144782, 3664507, 10993521, 34404964, 103214892, 318365333, 955095999, 2918309966, 8754929898, 26585715663, 79757146989, 241208177496, 723624532488, 2182538747689, 6547616243067, 19713018571138
Offset: 6
Examples
a(7) = 3: 17|2|3|4|5|6, 1|2|37|4|5|6, 1|2|3|4|57|6. a(8) = 22: 13|24|5|6|7|8, 15|24|3|6|7|8, 1|24|35|6|7|8, 15|26|3|4|7|8, 15|2|3|46|7|8, 1|26|35|4|7|8, 1|2|35|46|7|8, 17|26|3|4|5|8, 1|26|37|4|5|8, 1|26|3|4|57|8, 17|2|3|46|5|8, 1|2|37|46|5|8, 1|2|3|46|57|8, 17|28|3|4|5|6, 17|2|3|48|5|6, 17|2|3|4|5|68, 1|28|37|4|5|6, 1|2|37|48|5|6, 1|2|37|4|5|68, 1|28|3|4|57|6, 1|2|3|48|57|6, 1|2|3|4|57|68.
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Crossrefs
Column k=6 of A274537.
Formula
G.f.: -x^6/((x-1)*(3*x-1)*(2*x+1)*(2*x-1)*(x+1)*(6*x^2-1)*(2*x^2-1)).