cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274885 Coefficients of some q-polynomials, P_n(q) = q_factorial(n+1) / (q_factorial([n/2]) * q_factorial([(n+2)/2])) with [.] the floor function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 4, 6, 8, 9, 9, 8, 6, 4, 2, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 2, 4, 7, 11, 15, 20, 24, 27, 29, 29, 27, 24, 20, 15, 11, 7, 4, 2, 1, 1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2016

Keywords

Examples

			The polynomials start:
[0] 1
[1] q + 1
[2] q^2 + q + 1
[3] (q + 1) * (q^2 + 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
[5] (q + 1)*(q^2 - q + 1)*(q^2 + 1)*(q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 1, 1]
[3] [1, 2, 3, 3, 2, 1]
[4] [1, 1, 2, 2, 2, 1, 1]
[5] [1, 2, 4, 6, 8, 9, 9, 8, 6, 4, 2, 1]
[6] [1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
[7] [1, 2, 4, 7, 11, 15, 20, 24, 27, 29, 29, 27, 24, 20, 15, 11, 7, 4, 2, 1]
		

Crossrefs

Cf. Row sums are A212303(n+1) and A275212(n,0), A274886.

Programs

  • Magma
    QFac:= func< n, x | n eq 0 select 1 else (&*[1-x^j: j in [1..n]])/(1-x)^n >;
    P:= func< n,x | QFac(n+1,x)/( QFac(Floor(n/2),x)*QFac(Floor((n+2)/2),x) ) >;
    R:=PowerSeriesRing(Integers(), 30);
    [Coefficients(R!( P(n,x) )): n in [0..8]]; // G. C. Greubel, May 22 2019
  • Maple
    Qbinom1 := proc(n) local F, h; h := iquo(n,2);
    F := x -> QDifferenceEquations:-QFactorial(x,q);
    F(n+1)/(F(h)*F(h+1)); expand(simplify(expand(%)));
    seq(coeff(%,q,j), j=0..degree(%)) end: seq(Qbinom1(n), n=0..8);
  • Mathematica
    QBinom1[n_] := QFactorial[n+1,q] / (QFactorial[Quotient[n,2],q] QFactorial[Quotient[n+2,2],q]); Table[CoefficientList[QBinom1[n] // FunctionExpand,q], {n,0,8}] // Flatten
  • Sage
    from sage.combinat.q_analogues import q_factorial
    def q_binom1(n): return (q_factorial(n+1)//(q_factorial(n//2)* q_factorial((n+2)//2)))
    for n in (0..10): print(q_binom1(n).list())