cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274886 Triangle read by rows, the q-analog of the extended Catalan numbers A057977.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2016

Keywords

Comments

The q-analog of the extended Catalan numbers A057977 are univariate polynomials over the integers with degree floor((n+1)/2)*(floor((n+1)/2)-1)+1.
The q-analog of the Catalan numbers are A129175.
For a combinatorial interpretation in terms of the major index statistic of orbitals see A274888 and the link 'Orbitals'.

Examples

			The polynomials start:
[0] 1
[1] 1
[2] 1
[3] q^2 + q + 1
[4] q^2 + 1
[5] (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q^2 - q + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials are:
[ 0] [1]
[ 1] [1]
[ 2] [1]
[ 3] [1, 1, 1]
[ 4] [1, 0, 1]
[ 5] [1, 1, 2, 2, 2, 1, 1]
[ 6] [1, 0, 1, 1, 1, 0, 1]
[ 7] [1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
[ 8] [1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1]
[ 9] [1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1]
[10] [1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1]
		

Crossrefs

Programs

  • Maple
    QExtCatalan := proc(n) local h, p, P;
    P := x -> QDifferenceEquations:-QPochhammer(q,q,x);
    h := iquo(n, 2): p := `if`(n::even, 1-q, 1); (p*P(n))/(P(h)*P(h+1));
    expand(simplify(expand(%))); seq(coeff(%, q, j), j=0..degree(%)) end:
    seq(QExtCatalan(n, q), n=0..10);
  • Mathematica
    (* Function QBinom1 is defined in A274885. *)
    QExtCatalan[n_] := QBinom1[n] / QBinomial[n+1,1,q]; Table[CoefficientList[ QExtCatalan[n] // FunctionExpand,q], {n,0,10}] // Flatten
  • Sage
    # uses[q_binom1 from A274885]
    from sage.combinat.q_analogues import q_int
    def q_ext_catalan_number(n): return q_binom1(n)//q_int(n+1)
    for n in (0..10): print([n], q_ext_catalan_number(n).list())
    
  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def catalan_major_index(n):
        S = [0]*(((n+1)//2)^2 + ((n+1) % 2) - (n//2))
        for u in unit_orbitals(n):
            if any(x > 0 for x in accumulate(u)): continue # never rise above 0
            L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
            #    i+1 because u is 0-based whereas convention assumes 1-base.
            S[sum(L)] += 1
        return S
    for n in (0..10): print(catalan_major_index(n))

Formula

q-extCatalan(n,q) = (p*P(n,q))/(P(h,q)*P(h+1,q)) with P(n,q) = q-Pochhammer(n,q), h = floor(n/2) and p = 1-q if n is even else 1.