cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274887 Triangle read by rows: coefficients of the q-factorial.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1
Offset: 0

Views

Author

Peter Luschny, Jul 19 2016

Keywords

Comments

The main entry for this sequence is A008302 (Mahonian numbers).
q-factorial(n) is a univariate polynomial over the integers with degree n*(n-1)/2.
Evaluated at q=1 the q-factorial(n) gives the factorial A000142(n).

Examples

			The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1)
[5] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
The triangle starts:
[1]
[1]
[1, 1]
[1, 2, 2, 1]
[1, 3, 5, 6, 5, 3, 1]
[1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1]
[1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1]
		

Crossrefs

Cf. A008302 (the same for all n > 0), A000142 (row sums), A063746 (q-central_binomial), A129175 (q-Catalan), A274886 (q-extended_Catalan), A274888 (q-swing_factorial), A275216 (q-binomial), A275215 (q-Narayana).

Programs

  • Magma
    B:= func< n,x | n eq 0 select 1 else (&*[1-x^j: j in [1..n]])/(1-x)^n >;
    R:=PowerSeriesRing(Integers(), 30);
    [Coefficients(R!( B(n,x) )): n in [0..9]]; // G. C. Greubel, May 22 2019
    
  • Mathematica
    Table[CoefficientList[QFactorial[n,q]//FunctionExpand, q], {n,0,9} ]//Flatten
  • PARI
    for(n=0, 8, print1(Vec(if(n==0, 1, prod(j=1, n, 1-x^j)/(1-x)^n)), ", "); print(); ) \\ G. C. Greubel, May 23 2019
  • Sage
    from sage.combinat.q_analogues import q_factorial
    for n in (0..5): print(q_factorial(n).list())
    

Formula

a(n) = A008302(n) for all n > 0. - M. F. Hasler, Jan 06 2024