A274887 Triangle read by rows: coefficients of the q-factorial.
1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1
Offset: 0
Examples
The polynomials start: [0] 1 [1] 1 [2] q + 1 [3] (q + 1) * (q^2 + q + 1) [4] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1) [5] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1) The triangle starts: [1] [1] [1, 1] [1, 2, 2, 1] [1, 3, 5, 6, 5, 3, 1] [1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1] [1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1]
Links
- G. C. Greubel, Rows n = 0..30 of triangle, flattened
- NIST Digital Library of Mathematical Functions, q-Factorials. (Release 1.0.11 of 2016-06-08)
Crossrefs
Programs
-
Magma
B:= func< n,x | n eq 0 select 1 else (&*[1-x^j: j in [1..n]])/(1-x)^n >; R
:=PowerSeriesRing(Integers(), 30); [Coefficients(R!( B(n,x) )): n in [0..9]]; // G. C. Greubel, May 22 2019 -
Mathematica
Table[CoefficientList[QFactorial[n,q]//FunctionExpand, q], {n,0,9} ]//Flatten
-
PARI
for(n=0, 8, print1(Vec(if(n==0, 1, prod(j=1, n, 1-x^j)/(1-x)^n)), ", "); print(); ) \\ G. C. Greubel, May 23 2019
-
Sage
from sage.combinat.q_analogues import q_factorial for n in (0..5): print(q_factorial(n).list())
Formula
a(n) = A008302(n) for all n > 0. - M. F. Hasler, Jan 06 2024
Comments