cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274893 Number of nX6 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

16, 324, 200, 815, 3064, 12217, 48269, 191974, 767905, 3065418, 12266783, 49117667, 196547638, 787292648, 3152652324, 12625267314, 50570833189, 202532990424, 811204807382, 3249164512849, 13013594658959, 52124256901705
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Column 6 of A274895.

Examples

			Some solutions for n=4
..0..1..2..0..2..0. .0..1..0..2..1..0. .0..1..0..1..2..1. .0..1..2..0..2..0
..0..1..0..1..2..1. .2..1..2..1..0..2. .1..2..0..1..0..1. .0..1..2..1..2..0
..1..2..0..2..0..1. .2..0..2..0..2..1. .1..2..1..2..0..2. .1..2..0..1..0..1
..2..0..1..2..0..2. .1..0..1..0..2..0. .2..0..1..0..1..2. .2..0..1..2..0..1
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = a(n-1) +32*a(n-2) -496*a(n-4) -285*a(n-5) +4881*a(n-6) +4147*a(n-7) -34777*a(n-8) -31747*a(n-9) +193564*a(n-10) +159250*a(n-11) -877342*a(n-12) -559729*a(n-13) +3305202*a(n-14) +1371918*a(n-15) -10462555*a(n-16) -2038881*a(n-17) +28064748*a(n-18) -2573*a(n-19) -64372540*a(n-20) +10287733*a(n-21) +127544223*a(n-22) -35738974*a(n-23) -220567144*a(n-24) +79285065*a(n-25) +335987479*a(n-26) -133564456*a(n-27) -453839772*a(n-28) +180266595*a(n-29) +545461852*a(n-30) -199009384*a(n-31) -583472166*a(n-32) +180690849*a(n-33) +554326040*a(n-34) -134105374*a(n-35) -466206332*a(n-36) +79652731*a(n-37) +345892063*a(n-38) -35882573*a(n-39) -225652263*a(n-40) +10312807*a(n-41) +129040364*a(n-42) -882*a(n-43) -64456638*a(n-44) -2039779*a(n-45) +27988146*a(n-46) +1372306*a(n-47) -10489437*a(n-48) -560497*a(n-49) +3358044*a(n-50) +159731*a(n-51) -905008*a(n-52) -31875*a(n-53) +201297*a(n-54) +4160*a(n-55) -35960*a(n-56) -285*a(n-57) +4960*a(n-58) -496*a(n-60) +a(n-61) +32*a(n-62) -a(n-64) for n>66