cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A274890 Number of n X 3 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

2, 12, 16, 38, 84, 192, 436, 990, 2253, 5121, 11645, 26483, 60215, 136936, 311381, 708076, 1610154, 3661438, 8326047, 18933223, 43053720, 97903198, 222629593, 506254676, 1151211539, 2617828789, 5952883022, 13536720098, 30782192928
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..1..2. .0..1..2. .0..1..2. .0..1..2. .0..1..0. .0..1..2
..2..1..2. .1..2..0. .0..1..0. .0..1..0. .1..2..0. .1..2..0. .0..1..2
..1..0..2. .1..2..1. .1..2..0. .1..2..0. .1..2..0. .1..0..1. .1..2..0
..1..0..1. .2..0..1. .2..0..1. .1..2..1. .2..0..1. .2..0..1. .1..2..0
		

Crossrefs

Column 3 of A274895.

Formula

Empirical: a(n) = a(n-1) + 4*a(n-2) - 6*a(n-4) - a(n-5) + 4*a(n-6) - a(n-8) for n>10.
Empirical g.f.: x*(2 + 10*x - 4*x^2 - 26*x^3 - 6*x^4 + 30*x^5 + 8*x^6 - 18*x^7 - x^8 + 4*x^9) / ((1 - x)*(1 + x)*(1 - x - 3*x^2 - x^3 + 3*x^4 - x^6)). - Colin Barker, Jan 31 2019

A274891 Number of nX4 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

4, 36, 37, 104, 275, 753, 2049, 5602, 15305, 41866, 114475, 313122, 856462, 2342559, 6407780, 17526908, 47941766, 131135884, 358697083, 981151642, 2683758871, 7340930445, 20079778989, 54924550811, 150236085835, 410943350656
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Column 4 of A274895.

Examples

			Some solutions for n=4
..0..1..2..0. .0..1..0..1. .0..1..0..2. .0..1..2..1. .0..1..2..0
..1..2..0..1. .2..1..2..1. .2..1..2..1. .1..2..0..1. .1..2..0..1
..2..0..1..2. .1..0..2..0. .1..0..2..0. .2..0..1..2. .2..0..1..2
..0..1..2..0. .1..2..1..0. .1..0..1..0. .0..1..2..0. .2..0..1..0
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = a(n-1) +8*a(n-2) -28*a(n-4) -9*a(n-5) +55*a(n-6) +16*a(n-7) -70*a(n-8) -9*a(n-9) +56*a(n-10) -28*a(n-12) +a(n-13) +8*a(n-14) -a(n-16) for n>18

A274892 Number of n X 5 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

8, 108, 86, 290, 913, 3017, 9863, 32539, 107369, 354366, 1171235, 3869271, 12787884, 42266197, 139689475, 461723614, 1526118256, 5044271535, 16673106905, 55109948877, 182157291955, 602093030588, 1990121537282, 6578044463591
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Column 5 of A274895.

Examples

			Some solutions for n=4
..0..1..2..1..2. .0..1..2..0..2. .0..1..0..2..1. .0..1..0..1..2
..0..1..0..1..2. .0..2..0..1..2. .2..1..2..1..0. .1..2..0..2..0
..1..2..0..2..0. .1..2..1..2..0. .2..0..2..1..2. .1..0..1..2..0
..2..0..1..2..0. .2..0..1..2..0. .1..0..1..0..2. .2..0..2..0..1
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = a(n-1) +16*a(n-2) -120*a(n-4) -55*a(n-5) +549*a(n-6) +319*a(n-7) -1772*a(n-8) -891*a(n-9) +4300*a(n-10) +1407*a(n-11) -7992*a(n-12) -1155*a(n-13) +11470*a(n-14) +a(n-15) -12854*a(n-16) +1155*a(n-17) +11372*a(n-18) -1407*a(n-19) -7960*a(n-20) +891*a(n-21) +4357*a(n-22) -320*a(n-23) -1820*a(n-24) +55*a(n-25) +560*a(n-26) -120*a(n-28) -a(n-29) +16*a(n-30) -a(n-32) for n>34.

A274893 Number of nX6 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

16, 324, 200, 815, 3064, 12217, 48269, 191974, 767905, 3065418, 12266783, 49117667, 196547638, 787292648, 3152652324, 12625267314, 50570833189, 202532990424, 811204807382, 3249164512849, 13013594658959, 52124256901705
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Column 6 of A274895.

Examples

			Some solutions for n=4
..0..1..2..0..2..0. .0..1..0..2..1..0. .0..1..0..1..2..1. .0..1..2..0..2..0
..0..1..0..1..2..1. .2..1..2..1..0..2. .1..2..0..1..0..1. .0..1..2..1..2..0
..1..2..0..2..0..1. .2..0..2..0..2..1. .1..2..1..2..0..2. .1..2..0..1..0..1
..2..0..1..2..0..2. .1..0..1..0..2..0. .2..0..1..0..1..2. .2..0..1..2..0..1
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = a(n-1) +32*a(n-2) -496*a(n-4) -285*a(n-5) +4881*a(n-6) +4147*a(n-7) -34777*a(n-8) -31747*a(n-9) +193564*a(n-10) +159250*a(n-11) -877342*a(n-12) -559729*a(n-13) +3305202*a(n-14) +1371918*a(n-15) -10462555*a(n-16) -2038881*a(n-17) +28064748*a(n-18) -2573*a(n-19) -64372540*a(n-20) +10287733*a(n-21) +127544223*a(n-22) -35738974*a(n-23) -220567144*a(n-24) +79285065*a(n-25) +335987479*a(n-26) -133564456*a(n-27) -453839772*a(n-28) +180266595*a(n-29) +545461852*a(n-30) -199009384*a(n-31) -583472166*a(n-32) +180690849*a(n-33) +554326040*a(n-34) -134105374*a(n-35) -466206332*a(n-36) +79652731*a(n-37) +345892063*a(n-38) -35882573*a(n-39) -225652263*a(n-40) +10312807*a(n-41) +129040364*a(n-42) -882*a(n-43) -64456638*a(n-44) -2039779*a(n-45) +27988146*a(n-46) +1372306*a(n-47) -10489437*a(n-48) -560497*a(n-49) +3358044*a(n-50) +159731*a(n-51) -905008*a(n-52) -31875*a(n-53) +201297*a(n-54) +4160*a(n-55) -35960*a(n-56) -285*a(n-57) +4960*a(n-58) -496*a(n-60) +a(n-61) +32*a(n-62) -a(n-64) for n>66

A274894 Number of nX7 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

32, 972, 465, 2291, 10337, 49697, 237807, 1143185, 5539989, 26833885, 130079497, 632358111, 3069896886, 14919608999, 72537188422, 352492355625, 1713947371548, 8332597817985, 40508772974972, 196969575853783, 957632906229433
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Column 7 of A274895.

Examples

			Some solutions for n=4
..0..1..2..0..1..0..1. .0..1..0..2..1..0..1. .0..1..2..0..2..0..1
..1..2..0..1..2..0..2. .2..1..0..2..0..2..1. .0..1..2..1..2..0..1
..1..2..0..2..0..1..2. .1..0..2..1..0..1..0. .1..2..0..1..0..1..2
..2..0..1..2..1..2..0. .1..0..2..1..2..1..0. .1..2..1..2..0..1..2
		

Crossrefs

Cf. A274895.

A274896 Number of 4 X n 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

6, 14, 38, 104, 290, 815, 2291, 6434, 18065, 50729, 142469, 400121, 1123718, 3155882, 8863073, 24891350, 69905726, 196325636, 551367590, 1548479459, 4348802339, 12213324374, 34300315505, 96330172385, 270536931545, 759785117405
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0..2. .0..1..2..0. .0..1..2..1. .0..1..0..2. .0..1..0..1
..2..1..2..1. .0..1..2..0. .1..2..0..1. .2..1..0..1. .1..2..0..1
..1..0..2..1. .1..2..0..1. .1..0..1..2. .2..0..2..1. .2..0..1..2
..0..2..1..0. .1..2..0..1. .2..0..1..0. .1..0..1..0. .2..0..2..0
		

Crossrefs

Row 4 of A274895.

Formula

Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 10*a(n-3) - 6*a(n-4) + a(n-5) for n>6.
Empirical g.f.: x*(6 - 16*x + 22*x^2 - 20*x^3 + 8*x^4 - x^5) / ((1 - x)*(1 - 4*x + 5*x^2 - 5*x^3 + x^4)). - Colin Barker, Jan 31 2019

A274897 Number of 5 X n 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

12, 26, 84, 275, 913, 3064, 10337, 34921, 117975, 398560, 1346637, 4550382, 15376372, 51958316, 175571071, 593268299, 2004704682, 6774075554, 22890197334, 77347965186, 261365481435, 883176688023, 2984330940525, 10084314105326
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..1. .0..1..2..0. .0..1..0..1. .0..1..2..1. .0..1..2..0
..1..2..0..1. .0..1..2..0. .1..2..0..1. .0..2..0..1. .1..2..0..1
..1..0..1..2. .1..2..0..1. .1..0..1..2. .1..2..1..2. .2..0..1..2
..2..0..1..2. .2..0..1..2. .2..0..2..0. .1..0..1..0. .0..1..2..0
..2..1..2..0. .2..1..2..0. .0..1..2..0. .2..0..2..0. .0..1..0..1
		

Crossrefs

Row 5 of A274895.

Formula

Empirical: a(n) = 8*a(n-1) - 27*a(n-2) + 56*a(n-3) - 75*a(n-4) + 61*a(n-5) - 28*a(n-6) + 7*a(n-7) - a(n-8) for n>9.
Empirical g.f.: x*(12 - 70*x + 200*x^2 - 367*x^3 + 425*x^4 - 301*x^5 + 126*x^6 - 30*x^7 + 4*x^8) / ((1 - x)^3*(1 - 5*x + 9*x^2 - 13*x^3 + 4*x^4 - x^5)). - Colin Barker, Jan 31 2019

A274898 Number of 6Xn 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

24, 50, 192, 753, 3017, 12217, 49697, 202749, 828828, 3391310, 13878192, 56789705, 232384474, 950977585, 3891812709, 15927107508, 65180736176, 266747574843, 1091648042865, 4467513170474, 18283077346563, 74822562153129
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Row 6 of A274895.

Examples

			Some solutions for n=4
..0..1..2..1. .0..1..0..2. .0..1..2..0. .0..1..2..0. .0..1..0..2
..0..2..0..1. .2..1..0..2. .0..1..2..1. .0..1..2..1. .2..1..0..1
..1..2..1..2. .1..0..2..1. .1..2..0..1. .1..2..0..1. .1..0..2..1
..2..0..1..2. .1..0..1..0. .1..2..0..2. .1..2..1..2. .1..2..1..0
..0..1..2..0. .0..2..1..0. .2..0..1..2. .2..0..1..2. .0..2..1..0
..0..1..2..0. .2..1..0..2. .2..0..2..0. .2..0..2..0. .0..1..0..2
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = 13*a(n-1) -77*a(n-2) +286*a(n-3) -736*a(n-4) +1351*a(n-5) -1787*a(n-6) +1716*a(n-7) -1217*a(n-8) +652*a(n-9) -265*a(n-10) +78*a(n-11) -14*a(n-12) +a(n-13) for n>14

A274899 Number of 7 X n 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

48, 95, 436, 2049, 9863, 48269, 237807, 1173787, 5803040, 28746995, 142599041, 707620370, 3511083299, 17420351674, 86438549422, 428942623935, 2128651136675, 10563418237405, 52420279346379, 260132938554538, 1290906088470552
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Row 7 of A274895.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..2..0. .0..1..2..1. .0..1..2..0. .0..1..0..1
..0..2..0..2. .0..1..0..1. .0..2..0..1. .0..2..0..1. .1..2..0..1
..1..2..1..2. .1..2..0..1. .1..2..1..2. .1..2..0..2. .2..0..1..2
..2..0..1..0. .2..0..1..2. .2..0..1..2. .1..0..1..2. .0..1..2..0
..0..1..2..0. .0..1..2..0. .2..0..2..0. .2..0..1..0. .1..2..0..1
..1..2..0..1. .1..2..0..1. .0..1..2..1. .2..1..2..0. .2..0..1..2
..1..2..0..1. .1..2..0..2. .0..2..0..1. .0..1..0..1. .2..1..2..0
		

Crossrefs

Cf. A274895.

Formula

Empirical: a(n) = 21*a(n-1) -209*a(n-2) +1330*a(n-3) -6059*a(n-4) +20839*a(n-5) -55739*a(n-6) +118287*a(n-7) -202495*a(n-8) +284119*a(n-9) -331806*a(n-10) +326718*a(n-11) -273224*a(n-12) +193798*a(n-13) -115270*a(n-14) +56258*a(n-15) -21837*a(n-16) +6481*a(n-17) -1404*a(n-18) +210*a(n-19) -20*a(n-20) +a(n-21) for n>22.

A274889 Number of n X n 0..2 arrays with no element equal to any value at offset (0,-1), (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 4, 16, 104, 913, 12217, 237807, 6843349, 292253909, 18485204565, 1735778832010, 242007116498916, 50034244634072936, 15365321608796091811
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Diagonal of A274895.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..2..0. .0..1..2..0. .0..1..2..0. .0..1..2..1
..1..2..0..1. .0..1..2..0. .1..2..0..1. .0..1..2..0. .0..2..0..1
..1..0..1..2. .1..2..0..1. .2..0..1..2. .1..2..0..1. .1..2..1..2
..2..0..1..2. .1..2..1..2. .2..0..1..0. .2..0..1..2. .2..0..1..2
		

Crossrefs

Cf. A274895.
Showing 1-10 of 10 results.