cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274934 Number of unlabeled graphs with n nodes that have two components, neither of which is the empty graph.

Original entry on oeis.org

0, 0, 1, 1, 3, 8, 30, 145, 1028, 12320, 274806, 12007355, 1019030239, 165091859656, 50502058492266, 29054157815353374, 31426486309136279775, 64001015806929213894372, 245935864212056913811759534, 1787577725208700551275529005084
Offset: 0

Views

Author

R. J. Mathar and N. J. A. Sloane, Jul 18 2016

Keywords

Examples

			a(6) = A216785(6)+2 =30 where the two additional graphs have two equal components (of which there are A001349(3)=2 choices).
		

Crossrefs

Cf. A001349, A216785 (non-isomorphic components), A275165, A275166, column 2 of A201922.

Programs

  • Mathematica
    terms = 20;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    A[x_] = Join[{1}, EULERi[Array[a88, terms]]].x^Range[0, terms] - 1;
    CoefficientList[(A[x]^2 + A[x^2])/2 + O[x]^terms, x] (* Jean-François Alcover, Sep 28 2018, after Andrew Howroyd in A001349 *)

Formula

G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A001349 without the initial constant 1.
a(n) = A201922(n,2). - R. J. Mathar, Jul 20 2016