cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274936 Number of n-node unlabeled forests that have 2 non-isomorphic components.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 11, 22, 44, 93, 202, 451, 1033, 2422, 5792, 14075, 34734, 86761, 219188, 558984, 1437927, 3726535, 9723678, 25525112, 67374649, 178723358, 476263051, 1274448596, 3423491458, 9229075121, 24961961679, 67721961268, 184255943244, 502658875034, 1374713643212
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2016

Keywords

Crossrefs

Cf. A000055, A274935-A274938. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
          b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
        end:
    a:= proc(n) option remember; add(g(j)*g(n-j), j=0..n/2)-
          `if`(n::odd, 0, (t-> t*(t+1)/2)(g(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
    g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
    a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 0, n/2}]-If[OddQ[n], 0, Function[t, t*(t+1)/2][g[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)

Formula

G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055.
a(2n+1) = A274935(2n+1). a(2n) = A274935(2n)-A000055(n). - R. J. Mathar, Jul 20 2016