A274936 Number of n-node unlabeled forests that have 2 non-isomorphic components.
0, 1, 1, 2, 3, 6, 11, 22, 44, 93, 202, 451, 1033, 2422, 5792, 14075, 34734, 86761, 219188, 558984, 1437927, 3726535, 9723678, 25525112, 67374649, 178723358, 476263051, 1274448596, 3423491458, 9229075121, 24961961679, 67721961268, 184255943244, 502658875034, 1374713643212
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, (add(add(d* b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)* b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2)))) end: a:= proc(n) option remember; add(g(j)*g(n-j), j=0..n/2)- `if`(n::odd, 0, (t-> t*(t+1)/2)(g(n/2))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2016
-
Mathematica
b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]]; a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 0, n/2}]-If[OddQ[n], 0, Function[t, t*(t+1)/2][g[n/2]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)
Formula
G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055.