A274937 Number of unlabeled forests on n nodes that have exactly two nonempty components.
0, 0, 1, 1, 2, 3, 6, 11, 23, 46, 99, 216, 488, 1121, 2644, 6334, 15437, 38132, 95368, 241029, 614968, 1582030, 4100157, 10697038, 28075303, 74086468, 196470902, 523383136, 1400051585, 3759508536, 10131097618, 27391132238, 74283552343, 202030012554, 550934060120, 1506161266348
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, (add(add(d* b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)* b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2)))) end: a:= proc(n) option remember; add(g(j)*g(n-j), j=1..n/2)- `if`(n::odd, 0, (t-> t*(t-1)/2)(g(n/2))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2016
-
Mathematica
b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/ (n-1)]; g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}] + If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]]; a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 1, n/2}] - If[OddQ[n], 0, Function[t, t*(t-1)/2][g[n/2]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 14 2017, after Alois P. Heinz *)
Formula
G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A000055 without the initial constant 1.
a(n) = A095133(n,2). - R. J. Mathar, Jul 20 2016
Comments