cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274946 Boyd's Pisot-like sequence F(0,5,11).

Original entry on oeis.org

0, 5, 11, 19, 30, 46, 70, 106, 160, 241, 363, 547, 824, 1241, 1869, 2815, 4240, 6386, 9618, 14486, 21818, 32861, 49493, 74543, 112272, 169097, 254683, 383587, 577734, 870146, 1310558, 1973878, 2972928, 4477633, 6743923, 10157263, 15298216, 23041189, 34703157, 52267663, 78722192
Offset: 0

Views

Author

N. J. A. Sloane, Jul 26 2016

Keywords

Comments

F(f0,f1,f2) is the sequence a(n) defined by a(0)=f0, a(1)=f1, a(2)=f2, and for n >= 3, a(n) = floor(1/2 + (a(n-1)/a(n-2))*(a(n-1)+a(n-3))-a(n-2)) unless a(n-2)=0 in which case a(n) = - a(n-4).

Crossrefs

Cf. A008776 (definition of the usual Pisot sequences), A010925.

Programs

  • Magma
    f:=[0,5,11]; [n le 3 select f[n] else Floor(1/2+(Self(n-1)/Self(n-2))*(Self(n-1)+Self(n-3))-Self(n-2)): n in [1..50]]; // Bruno Berselli, Jul 26 2016
    
  • Maple
    f:=proc(n) option remember; global f0,f1,f2;
    if n = 0 then f0
    elif n=1 then f1
    elif n=2 then f2
    elif f(n-2)=0 then -f(n-4)
    else floor(1/2 + (f(n-1)/f(n-2))*(f(n-1)+f(n-3))-f(n-2)); fi;
    end;
    f0:=0; f1:=5; f2:=11; [seq(f(n),n=0..40)];
  • PARI
    boyd(nmax, f1, f2, f3) = {
      f=vector(nmax); f[1]=f1; f[2]=f2; f[3]=f3;
      for(n=4, nmax, f[n] = floor(1/2 + (f[n-1]/f[n-2])*(f[n-1]+f[n-3])-f[n-2]));
      f
    }
    boyd(50, 0, 5, 11) \\ Colin Barker, Jul 26 2016

Formula

Conjectures from Colin Barker, Jul 26 2016: (Start)
a(n) = a(n-1)+a(n-3)+a(n-5)-a(n-6) for n>5.
G.f.: x*(5+6*x+8*x^2+6*x^3+5*x^4) / (1-x-x^3-x^5+x^6).
(End)
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016