cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274947 Irregular triangle read by rows: T(n,k) (n>=0, 0 <= k <= n^2) = least number of squares attacked by k queens on an n X n board.

Original entry on oeis.org

0, 0, 1, 0, 4, 4, 4, 4, 0, 7, 8, 9, 9, 9, 9, 9, 9, 9, 0, 10, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 0, 13, 18, 20, 21, 22, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 0, 16, 23, 27, 28, 30, 31, 32, 32, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2016

Keywords

Comments

Place k queens on an n X n board so that the total number of squares attacked/occupied by the queens is minimized.
If enough terms were known, would provide an upper bound for A250000. For if A250000(n) = Q then T(n,Q) <= n^2 - Q, or equivalently A274948(n,Q) >= Q.
Values n^2 - T(n,n) are given in A001366.
Let X(n) be the smallest number so that no matter how you place X queens, they attack every square. That is, X is the minimal number such that T(n,k) = n^2 for all k >= X. Then X = n^2 - T(n,1) + 1 = A274948(n,1) + 1 = n^2 - 3*n + 3. More generally, T(n,k') <= n^2-k if and only if k' <= n^2-T(n,k). For example, we may place 2 queens on two squares of a 4 X 4 board and leave 4^2-T(4,2)=3 squares not attacked, so we may place 3 queens on these 3 squares instead and leave those two squares not attacked, ergo, T(4,3)=16-2. - Andrey Zabolotskiy, Jul 29 2016

Examples

			The triangle begins:
0
0, 1,
0, 4, 4, 4, 4,
0, 7, 8, 9, 9, 9, 9, 9, 9, 9,
0, 10, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
0, 13, 18, 20, 21, 22, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
0, 16, 23, 27, 28, 30, 31, 32, 32, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
0, 19, 28, 33, 33, 38, 39, 42, 43, 43, 43, 44, 45, 45, 45, 45, 45, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49,
0, 22, 33, 39, 40, 47, 49, 51, 53, 54, 55, 56, 57, 57, 58, 58, 59, 59, 60, 60, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
0, 25, 38, 45, 45, 54, 57, 61, 62, 63, 67, 68, 69, 70, 71, 72, 72, 72, 72, 73, 74, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 77, 77, 77, 77, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81,
0, 28, 43, 51, 52, 63, 67, 70, 74, 76, 78, 81, 82, 84, 85, 86, 87, 88, 88, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 93, 93, 94, 94, 94, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
...
(Rows 6 through 10 from _Rob Pratt_, Aug 02 2016)
The entry T(4,3) = 14 is achieved by
OXOX
OOOX
AOOO
OOAO
since the two squares marked A are not attacked by the three queens at X.
		

Crossrefs

Cf. A075458 (minimal number of queens needed to attack all the squares of an n X n board).
Row 8 subtracted from 64 is A342151.

Formula

T(n,1) = 3*n-2 for n >= 1.

Extensions

Corrections and more terms from Andrey Zabolotskiy, Jul 29 2016
More terms via integer linear programming from Rob Pratt, Aug 02 2016