A274947 Irregular triangle read by rows: T(n,k) (n>=0, 0 <= k <= n^2) = least number of squares attacked by k queens on an n X n board.
0, 0, 1, 0, 4, 4, 4, 4, 0, 7, 8, 9, 9, 9, 9, 9, 9, 9, 0, 10, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 0, 13, 18, 20, 21, 22, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 0, 16, 23, 27, 28, 30, 31, 32, 32, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36
Offset: 0
Examples
The triangle begins: 0 0, 1, 0, 4, 4, 4, 4, 0, 7, 8, 9, 9, 9, 9, 9, 9, 9, 0, 10, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 0, 13, 18, 20, 21, 22, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 0, 16, 23, 27, 28, 30, 31, 32, 32, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 19, 28, 33, 33, 38, 39, 42, 43, 43, 43, 44, 45, 45, 45, 45, 45, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 0, 22, 33, 39, 40, 47, 49, 51, 53, 54, 55, 56, 57, 57, 58, 58, 59, 59, 60, 60, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 25, 38, 45, 45, 54, 57, 61, 62, 63, 67, 68, 69, 70, 71, 72, 72, 72, 72, 73, 74, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 77, 77, 77, 77, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 0, 28, 43, 51, 52, 63, 67, 70, 74, 76, 78, 81, 82, 84, 85, 86, 87, 88, 88, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 93, 93, 94, 94, 94, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, ... (Rows 6 through 10 from _Rob Pratt_, Aug 02 2016) The entry T(4,3) = 14 is achieved by OXOX OOOX AOOO OOAO since the two squares marked A are not attacked by the three queens at X.
Links
- Bernard Lemaire and Pavel Vitushinkiy, Placing n non dominating queens on the n X n chessboard. Part I, French Federation of Mathematical Games.
- Bernard Lemaire and Pavel Vitushinkiy, Placing n non dominating queens on the n X n chessboard. Part II, French Federation of Mathematical Games.
Crossrefs
Formula
T(n,1) = 3*n-2 for n >= 1.
Extensions
Corrections and more terms from Andrey Zabolotskiy, Jul 29 2016
More terms via integer linear programming from Rob Pratt, Aug 02 2016
Comments