A274968 Even numbers n >= 4 which are not m-gonal number for 3 <= m < n.
4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 266, 272, 278, 284, 290, 296, 302
Offset: 1
Keywords
Examples
20 is in this sequence because 20 is trivially a 20-gonal number of order k = 2 (element of A051872) but not an m-gonal number for 3 <= k <= (1/2)*{-1 + sqrt[1 + 8*20]}.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- OEIS Wiki, Polygonal numbers
Programs
-
PARI
lista(nn) = {forstep(n=4, nn, 2, sp = n; forstep(k=n, 3, -1, if (ispolygonal(n, k), sp=k);); if (sp == n, print1(n, ", ")););} \\ Michel Marcus, Sep 06 2016
-
Python
A274968_list = [] for n in range(4,10**6,2): k = 3 while k*(k+1) <= 2*n: if not (2*(k*(k-2)+n)) % (k*(k - 1)): break k += 1 else: A274968_list.append(n) # Chai Wah Wu, Jul 28 2016
-
Sage
def is_A274968(n): if is_odd(n): return False for m in (3..(n+3)//3): if pari('ispolygonal')(n, m): return False return True print([n for n in (3..302) if is_A274968(n)]) # Peter Luschny, Jul 28 2016
Comments