A274971 Numbers k such that (x+1)^3 - x^3 = k*y^2 has integer solutions.
1, 7, 19, 31, 37, 43, 61, 67, 79, 91, 103, 127, 139, 151, 157, 163, 169, 199, 211, 217, 223, 247, 271, 283, 307, 313, 331, 343, 349, 367, 373, 379, 397, 403, 427, 439, 463, 469, 487, 499, 511, 523, 547, 553, 571, 577, 607, 613, 619, 631, 643, 661, 679, 691
Offset: 1
Keywords
Examples
7 is in the sequence because, for instance, (167^3-166^3)/7 = 11881 = 109^2.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Dario A. Alpern, Quadratic two integer variable equation solver
Crossrefs
Programs
-
Mathematica
A004611=Select[Range[500],And@@(Mod[#,3]==1&)/@(First/@FactorInteger[#])&]; Select[A004611,Reduce[x^2+3== 12*#*y^2,{x,y},Integers]=!=False &] (* Ray Chandler, Jul 24 2016 *)
Extensions
More terms using solver at Alpern link by Ray Chandler, Jul 23 2016