cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274975 Sum of n-th powers of the three roots of x^3-2*x^2-x+1.

Original entry on oeis.org

3, 2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450, 35316195134, 79354770147, 178308549978
Offset: 0

Views

Author

Kai Wang, Jul 14 2016

Keywords

Comments

a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3-2*x^2-x+1.
x1 = 1/(2*cos(Pi/7)),
x2 = 1/(-2*cos(2*Pi/7)),
x3 = 1/(-2*cos(4*Pi/7)).

Crossrefs

Cf. A096975.
3 followed by terms of A033304.

Programs

  • Mathematica
    CoefficientList[Series[-(x^2 + 4 x - 3)/(x^3 - x^2 - 2 x + 1), {x, 0, 32}], x] (* Michael De Vlieger, Jul 14 2016 *)
  • PARI
    Vec(-(x^2+4*x-3)/(x^3-x^2-2*x+1) + O(x^50)) \\ Colin Barker, Aug 02 2016

Formula

G.f.: -(x^2+4*x-3)/(x^3-x^2-2*x+1). - Alois P. Heinz, Jul 14 2016
a(0)=3, a(1)=2, a(2)=6; thereafter a(n)=2*a(n-1)+a(n-2)-a(n-3).
a(n) = (2*cos(Pi/7))^(-n) + (-2*cos(2*Pi/7))^(-n) + (-2*cos(4*Pi/7))^(-n).
a(n) = A033304(n-1) for n>0.