A274994 Primes p such that p^2 divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1).
3, 1093, 3511, 9511, 13691
Offset: 1
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
Programs
-
Mathematica
p=3; While[p<20000, If[Mod[Sum[PowerMod[k,p-2,p^2]*(PowerMod[k,p-1,p^2]-1), {k,1,(p-1)/2}], p^2] == 0, Print [p]]; p=NextPrime[p]]
-
PARI
is(n)=if(!isprime(n), return(0)); my(m=n^2,e=n-2); sum(k=1,n\2, Mod(k,m)^e*(Mod(k,m)^(e+1)-1))==0 && n>2 \\ Charles R Greathouse IV, Nov 13 2016
Comments