René Gy has authored 15 sequences. Here are the ten most recent ones:
A348153
Primes for which there is no pair (k,q) with k a positive integer and q another prime, such that p=q*(2k+1)-2k.
Original entry on oeis.org
2, 3, 5, 17, 41, 73, 89, 97, 137, 193, 233, 257, 313, 353, 449, 457, 569, 641, 809, 857, 929, 1033, 1049, 1097, 1129, 1153, 1193, 1217, 1289, 1409, 1433, 1601, 1609, 1697, 1753, 1889, 1913, 1993, 2081, 2137, 2153, 2273, 2297, 2393, 2473, 2617, 2633, 2657, 2689, 2713, 2753, 2777, 2969
Offset: 1
-
lim = 2000; p = 2; listc = {}; listp = {}; While[p < lim, n = 1;
While[n <= (p - 3)/4,
If[PrimeQ[(p + 2 n)/(2 n + 1)], n = 2*p, n = n + 1]];
If[n == 2*p, AppendTo[listc, p]]; AppendTo[listp, p];
p = NextPrime[p]]; Complement[listp, listc]
-
isok(p) = {if (isprime(p), for (k=1, (p-3)/4, my(q = (p+2*k)/(2*k+1)); if ((denominator(q)==1) && isprime(q), return(0));); return (1););} \\ Michel Marcus, Oct 07 2021
Original entry on oeis.org
6, 14, 38, 42, 57, 65, 70, 93, 106, 114, 118, 138, 154, 158, 182, 186, 190, 205, 210, 217, 218, 222, 266, 277, 281, 285, 309, 326, 334, 366, 381, 390, 393, 394, 397, 398, 401, 406, 434, 457, 469, 473, 478, 493, 498, 505, 518, 542, 561, 570, 581, 606, 614, 618
Offset: 1
14 belongs to the sequence, because it is squarefree, and Sum_{j=1..14} j^(2k) is always divisible by 29 when 14 does not divide k, and when 14 divides k, it is divisible by 13 or by 7.
More terms added and incorrect Mathematica program removed by
Jinyuan Wang, Mar 07 2025
A344378
Positive integers m for which there exists a positive even integer 2k such that Sum_{j=1..m} j^(2k) has no prime divisor smaller than 2*m + 3.
Original entry on oeis.org
1, 2, 5, 10, 21, 29, 30, 33, 34, 41, 46, 61, 66, 69, 77, 78, 82, 86, 101, 102, 105, 109, 110, 113, 129, 133, 141, 142, 145, 165, 173, 177, 178, 185, 194, 201, 209, 213, 214, 221, 226, 230, 246, 254, 257, 258, 273, 282, 286, 290, 298, 313, 317, 321, 322, 329, 330
Offset: 1
2 belongs to the sequence since 1 + 2^(2*2) = 17 is a prime number which is larger than 2*2 + 1 = 5.
5 belongs to the sequence because 1 + 2^20 + 3^20 + 4^20 + 5^20 = 96470431101379 = 137*704163730667 has no prime divisor smaller than 2*5 + 3 = 13.
Incorrect Mathematica program removed by
Jinyuan Wang, Mar 18 2025
A308304
a(n) = (i^n)*Sum_{k=0..n} B_k*|s(n+1,k+1)|*(n+1)^k.
Original entry on oeis.org
1, 0, 1, 0, 24, 0, 3396, 0, 1706112, 0, 2277172800, 0, 6690143635200, 0, 38006393154105600, 0, 380203596126189158400, 0, 6242084318591496668160000, 0, 159215887013285165806891008000
Offset: 0
-
a(n) = (I^n)*sum(k=0, n, bernfrac(k)*abs(stirling(n+1,k+1,1))*(n+1)^k); \\ Michel Marcus, May 19 2019
Original entry on oeis.org
2, 3, 3, 7, 18, 123, 2207, 271443, 599074578, 162614600673847, 97418273275323406890123, 15841633607002416873831447357889638603, 1543264591854508694059691789796980188767738307671225999544322
Offset: 0
-
Table[LucasL[2 Fibonacci[n]], {n, 0, 10}]
RecurrenceTable[{a[0]==2,a[1]==a[2]==3,a[n+1]==a[n]a[n-1]-a[n-2]},a,{n,20}] (* Harvey P. Dale, Mar 28 2020 *)
-
a(n)={my(t=2*fibonacci(n)); fibonacci(t + 1) + fibonacci(t - 1)} \\ Andrew Howroyd, Mar 01 2020
A319404
a(n) is the period of the periodic k-sequence q_k=lcm(k+1,k+2,...,k+n)/(n*binomial(k+n,n)).
Original entry on oeis.org
1, 1, 2, 3, 12, 20, 60, 105, 280, 504, 2520, 27720, 27720, 51480, 72072, 45045, 720720, 1361360, 12252240, 46558512, 33256080, 21162960, 232792560, 5354228880, 1070845776, 2059318800, 2974571600, 11473347600, 80313433200, 2329089562800, 2329089562800, 4512611027925
Offset: 1
For n = 5, a(5) = 12 since from k>=0, we have lcm(k+1,k+2,k+3,k+4,k+5)/5/binomial(k+5,5) = 12,2,4,3,4,2,12,1,4,6,4,1,12,2,4,3,4,2,12,1,4,6,4,1,12,2,4,3,4,2,12,1,4,6,4,1,12,..., etc. a periodic sequence of period 12.
-
ll2[n0_, m0_] :=
Module[{f, g, i, n = n0, m = m0}, g = 1;
If[1 <= m <= n, Do[f = LCM[g, n - i]; g = f, {i, 0, m - 1}], f = 1];f]
list3 = {1};
Do[i = 0; ll = ll2[m, m]/m; b = {1, ll };a = {0, 0 };
While[ a != b, i = i + ll;
a = { ll2[m + i - 1, m]/(m*Binomial[m + i - 1, m]), ll2[m + i, m]/(
m*Binomial[m + i, m])}]; AppendTo[list3, i], {m, 2, 50}]; Print[list3]
A286483
a(n) = (i^n)*Sum_{k=0..n} (k+1)*B_k*|s(n+2,k+2)|*(n+2)^k.
Original entry on oeis.org
1, 0, 5, 0, 238, 0, 51508, 0, 35028576, 0, 59053389408, 0, 209726098354368, 0, 1397532391623302400, 0, 16043549794523492290560, 0, 297285345537576037788672000, 0, 8447414796960536731803240038400
Offset: 0
-
list = {};
nlim = 20; Do[s=(-1)^(n/2) Sum[(-1)^(n-k)*(k+1)*BernoulliB[k]*StirlingS1[n+2,k+2]*(n+2)^k,{k,0,n}];AppendTo[list,s], {n,0,nlim}]; Print[list]
-
a(n) = (I^n)*sum(k=0, n, (k+1)*bernfrac(k)*abs(stirling(n+2,k+2,1))*(n+2)^k); \\ Michel Marcus, May 19 2019
A280300
Primes such that the Wilson quotient and the Fermat quotient satisfy 2*((p-1)!+1)/p +(2^(p-1)-1)/p == 0 (mod p).
Original entry on oeis.org
A274994
Primes p such that p^2 divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1).
Original entry on oeis.org
3, 1093, 3511, 9511, 13691
Offset: 1
-
p=3; While[p<20000, If[Mod[Sum[PowerMod[k,p-2,p^2]*(PowerMod[k,p-1,p^2]-1), {k,1,(p-1)/2}], p^2] == 0, Print [p]]; p=NextPrime[p]]
-
is(n)=if(!isprime(n), return(0)); my(m=n^2,e=n-2); sum(k=1,n\2, Mod(k,m)^e*(Mod(k,m)^(e+1)-1))==0 && n>2 \\ Charles R Greathouse IV, Nov 13 2016
A277167
Prime numbers p such that (-1)^h + (h!)^2 == 0 (mod p^2) where h = (p-1)/2.
Original entry on oeis.org
3, 11, 31, 47, 53
Offset: 1
(-1)^((11-1)/2)+(((11-1)/2)!)^2 = 14399 = 7*11^2*17.
- Lagrange, "Démonstration d’un théoreme nouveau concernant les nombres premiers," Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres [de Berlin], année 1771 (published 1783), 125-137.
- G. B. Mathews, Theory of Numbers, part 1 [all published] (Cambridge, 1892), 318.
-
lista(nn) = forprime(p=3, nn, if ((((-1)^((p-1)/2)+(((p-1)/2)!)^2) % p^2) == 0, print1(p, ", "))); \\ Michel Marcus, Oct 02 2016
Comments