cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274994 Primes p such that p^2 divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1).

Original entry on oeis.org

3, 1093, 3511, 9511, 13691
Offset: 1

Views

Author

René Gy, Nov 11 2016

Keywords

Comments

Any prime p divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1). But a restricted list of primes p are such that p^2 divides Sum_{k=1..(p-1)/2}(k^(p-2))*(k^(p-1)-1).
Also primes p such that (2^(p-1)-1)/p == 0 (mod p) or 2*((p-1)!+1)/p +(2^(p-1)-1)/p == 0 (mod p), because it can be shown that Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1) == p*((2^(p-1)-1)/p)*(2*((p-1)!+1)/p +(2^(p-1)-1)/p) (mod p^2).
The Wieferich primes (A001220) belong to the sequence.
No more terms up to 2000000, because A280300 has no more terms up to 2000000, and A001220 has no other terms below 4.97*10^17 (see the comments in these sequences). - René Gy, Jan 01 2017

Crossrefs

Equals the union of A001220 and A280300.

Programs

  • Mathematica
    p=3; While[p<20000, If[Mod[Sum[PowerMod[k,p-2,p^2]*(PowerMod[k,p-1,p^2]-1), {k,1,(p-1)/2}], p^2] == 0, Print [p]]; p=NextPrime[p]]
  • PARI
    is(n)=if(!isprime(n), return(0)); my(m=n^2,e=n-2); sum(k=1,n\2, Mod(k,m)^e*(Mod(k,m)^(e+1)-1))==0 && n>2 \\ Charles R Greathouse IV, Nov 13 2016
Showing 1-1 of 1 results.