cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275019 2-adic valuation of tetrahedral numbers C(n+2,3) = n(n+1)(n+2)/6 = A000292(n).

Original entry on oeis.org

0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 5, 4, 5, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 6, 5, 6, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4, 3, 4, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 5, 4, 5, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 4
Offset: 1

Views

Author

M. F. Hasler, Dec 03 2016

Keywords

Comments

The subsequence of every other term (a(2n-1), n >= 1) is the ruler sequence A007814 = (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...), in particular every fourth term is zero. The nonzero terms among them, a(4n-1) = A007814(2n) (n >= 1) have both their neighbors equal to one more than themselves, a(4n-2) = a(4n) = a(4n-1) + 1 = A007814(2n) + 1.

Crossrefs

Programs

  • Magma
    [Valuation(n*(n+1)*(n+2)/6, 2): n in [1..100]]; // Vincenzo Librandi, Dec 04 2016
    
  • Maple
    seq(padic:-ordp(n*(n+1)*(n+2)/6,2),n=1..100); # Robert Israel, Dec 04 2016
  • Mathematica
    a[n_] := IntegerExponent[n*(n+1)*(n+2)/6, 2]; Array[a, 100] (* Amiram Eldar, Sep 13 2024 *)
  • PARI
    a(n)=valuation(n*(n+1)*(n+2)/6,2)
    
  • Python
    def A275019(n): return (~(m:=n*(n+1)*(n+2)//6)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

From Robert Israel, Dec 04 2016: (Start)
a(n) = A007814(n) + A007814(n+1) + A007814(n+2) - 1.
G.f.: (1+x+x^2)*Sum_{k>=1} x^(2^k-2)/(1-x^(2^k)) - 1/(1-x). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Sep 13 2024