A275020 Numbers k such that (5*10^k + 91) / 3 is prime.
1, 2, 3, 10, 19, 35, 43, 80, 107, 143, 199, 218, 255, 304, 353, 560, 904, 996, 1051, 6141, 8075, 9913, 11151, 28469, 75244, 108960, 122592, 178206, 187471, 257431
Offset: 1
Examples
3 is in this sequence because (5*10^3 + 91) / 3 = 1697 is prime. Initial terms and associated primes: a(1) = 1, 47; a(2) = 2, 197; a(3) = 3, 1697; a(4) = 10, 16666666697; a(5) = 19, 16666666666666666697, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 16w97.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(5*10^# + 91) / 3] &]
-
PARI
is(n)=ispseudoprime((5*10^n + 91)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(26)-a(29) from Robert Price, Apr 28 2018
a(30) from Robert Price, Oct 25 2023
Comments