cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A124419 Number of partitions of the set {1,2,...n} having no blocks that contain both odd and even entries.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 25, 75, 225, 780, 2704, 10556, 41209, 178031, 769129, 3630780, 17139600, 87548580, 447195609, 2452523325, 13450200625, 78697155750, 460457244900, 2859220516290, 17754399678409, 116482516809889, 764214897046969, 5277304280371714
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Examples

			a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
		

Crossrefs

Column k=0 of A124418 and of A363493.
Column k=2 of A275069.

Programs

  • Maple
    Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1,s=1,x=0},Q[n]),n=0..30);
    # second Maple program:
    with(combinat):
    a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](1,1,0), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = A000110(floor(n/2)) * A000110(ceiling(n/2)). - Alois P. Heinz, Oct 23 2013
a(n) mod 2 = A088911(n). - Alois P. Heinz, Jun 06 2023

A275070 Number of set partitions of [n] such that i-j is a multiple of three for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 20, 50, 125, 375, 1125, 3375, 11700, 40560, 140608, 548912, 2142868, 8365427, 36140293, 156133187, 674526133, 3184194060, 15031429200, 70957944000, 362451121200, 1851389821260, 9456845543523, 51863510753775, 284431392616875
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(7) = 20: 147|25|36, 14|25|36|7, 147|25|3|6, 14|25|3|6|7, 147|2|36|5, 14|2|36|5|7, 147|2|3|5|6, 14|2|3|5|6|7, 17|25|36|4, 1|25|36|47, 1|25|36|4|7, 17|25|3|4|6, 1|25|3|47|6, 1|25|3|4|6|7, 17|2|36|4|5, 1|2|36|47|5, 1|2|36|4|5|7, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.
		

Crossrefs

Column k=3 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..2} A000110(floor((n+i)/3)).

A275071 Number of set partitions of [n] such that i-j is a multiple of four for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 40, 100, 250, 625, 1875, 5625, 16875, 50625, 175500, 608400, 2109120, 7311616, 28543424, 111429136, 435002204, 1698181681, 7336479479, 31695036961, 136928804999, 591559418641, 2792538190620, 13182563408400, 62230116888000
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(9) = 40: 159|26|37|48, 15|26|37|48|9, 159|26|37|4|8, 15|26|37|4|8|9, 159|26|3|48|7, 15|26|3|48|7|9, 159|26|3|4|7|8, 15|26|3|4|7|8|9, 159|2|37|48|6, 15|2|37|48|6|9, 159|2|37|4|6|8, 15|2|37|4|6|8|9, 159|2|3|48|6|7, 15|2|3|48|6|7|9, 159|2|3|4|6|7|8, 15|2|3|4|6|7|8|9, 19|26|37|48|5, 1|26|37|48|59, 1|26|37|48|5|9, 19|26|37|4|5|8, 1|26|37|4|59|8, 1|26|37|4|5|8|9, 19|26|3|48|5|7, 1|26|3|48|59|7, 1|26|3|48|5|7|9, 19|26|3|4|5|7|8, 1|26|3|4|59|7|8, 1|26|3|4|5|7|8|9, 19|2|37|48|5|6, 1|2|37|48|59|6, 1|2|37|48|5|6|9, 19|2|37|4|5|6|8, 1|2|37|4|59|6|8, 1|2|37|4|5|6|8|9, 19|2|3|48|5|6|7, 1|2|3|48|59|6|7, 1|2|3|48|5|6|7|9, 19|2|3|4|5|6|7|8, 1|2|3|4|59|6|7|8, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Column k=4 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..3} A000110(floor((n+i)/4)).

A275072 Number of set partitions of [n] such that i-j is a multiple of five for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 80, 200, 500, 1250, 3125, 9375, 28125, 84375, 253125, 759375, 2632500, 9126000, 31636800, 109674240, 380204032, 1484258048, 5794315072, 22620114608, 88305447412, 344730881243, 1489305334237, 6434092503083, 27796547414797
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(9) = 16: 16|27|38|49|5, 16|27|38|4|5|9, 16|27|3|49|5|8, 16|27|3|4|5|8|9, 16|2|38|49|5|7, 16|2|38|4|5|7|9, 16|2|3|49|5|7|8, 16|2|3|4|5|7|8|9, 1|27|38|49|5|6, 1|27|38|4|5|6|9, 1|27|3|49|5|6|8, 1|27|3|4|5|6|8|9, 1|2|38|49|5|6|7, 1|2|38|4|5|6|7|9, 1|2|3|49|5|6|7|8, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Column k=5 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..4} A000110(floor((n+i)/5)).

A275073 Number of set partitions of [n] such that i-j is a multiple of six for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 160, 400, 1000, 2500, 6250, 15625, 46875, 140625, 421875, 1265625, 3796875, 11390625, 39487500, 136890000, 474552000, 1645113600, 5703060480, 19770609664, 77181418496, 301304383744, 1176245959616, 4591883265424
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(9) = 8: 17|28|39|4|5|6, 17|28|3|4|5|6|9, 17|2|39|4|5|6|8, 17|2|3|4|5|6|8|9, 1|28|39|4|5|6|7, 1|28|3|4|5|6|7|9, 1|2|39|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Column k=6 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..5} A000110(floor((n+i)/6)).

A275074 Number of set partitions of [n] such that i-j is a multiple of seven for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 320, 800, 2000, 5000, 12500, 31250, 78125, 234375, 703125, 2109375, 6328125, 18984375, 56953125, 170859375, 592312500, 2053350000, 7118280000, 24676704000, 85545907200, 296559144960, 1028071702528
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(9) = 4: 18|29|3|4|5|6|7, 18|2|3|4|5|6|7|9, 1|29|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Column k=7 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..6} A000110(floor((n+i)/7)).

A275075 Number of set partitions of [n] such that i-j is a multiple of eight for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 640, 1600, 4000, 10000, 25000, 62500, 156250, 390625, 1171875, 3515625, 10546875, 31640625, 94921875, 284765625, 854296875, 2562890625, 8884687500, 30800250000, 106774200000, 370150560000, 1283188608000
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			a(9) = 2: 19|2|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Column k=8 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..7} A000110(floor((n+i)/8)).

A275076 Number of set partitions of [n] such that i-j is a multiple of nine for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1280, 3200, 8000, 20000, 50000, 125000, 312500, 781250, 1953125, 5859375, 17578125, 52734375, 158203125, 474609375, 1423828125, 4271484375, 12814453125, 38443359375, 133270312500, 462003750000
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Crossrefs

Column k=9 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..8} A000110(floor((n+i)/9)).

A275077 Number of set partitions of [n] such that i-j is a multiple of ten for all i,j belonging to the same block.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2560, 6400, 16000, 40000, 100000, 250000, 625000, 1562500, 3906250, 9765625, 29296875, 87890625, 263671875, 791015625, 2373046875, 7119140625, 21357421875, 64072265625, 192216796875
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Crossrefs

Column k=10 of A275069.
Cf. A000110.

Formula

a(n) = Product_{i=0..9} A000110(floor((n+i)/10)).
Showing 1-9 of 9 results.