A124419
Number of partitions of the set {1,2,...n} having no blocks that contain both odd and even entries.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 25, 75, 225, 780, 2704, 10556, 41209, 178031, 769129, 3630780, 17139600, 87548580, 447195609, 2452523325, 13450200625, 78697155750, 460457244900, 2859220516290, 17754399678409, 116482516809889, 764214897046969, 5277304280371714
Offset: 0
a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Dzhumadil’daev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
-
Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1,s=1,x=0},Q[n]),n=0..30);
# second Maple program:
with(combinat):
a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
A275070
Number of set partitions of [n] such that i-j is a multiple of three for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 20, 50, 125, 375, 1125, 3375, 11700, 40560, 140608, 548912, 2142868, 8365427, 36140293, 156133187, 674526133, 3184194060, 15031429200, 70957944000, 362451121200, 1851389821260, 9456845543523, 51863510753775, 284431392616875
Offset: 0
a(7) = 20: 147|25|36, 14|25|36|7, 147|25|3|6, 14|25|3|6|7, 147|2|36|5, 14|2|36|5|7, 147|2|3|5|6, 14|2|3|5|6|7, 17|25|36|4, 1|25|36|47, 1|25|36|4|7, 17|25|3|4|6, 1|25|3|47|6, 1|25|3|4|6|7, 17|2|36|4|5, 1|2|36|47|5, 1|2|36|4|5|7, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.
A275071
Number of set partitions of [n] such that i-j is a multiple of four for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 8, 16, 40, 100, 250, 625, 1875, 5625, 16875, 50625, 175500, 608400, 2109120, 7311616, 28543424, 111429136, 435002204, 1698181681, 7336479479, 31695036961, 136928804999, 591559418641, 2792538190620, 13182563408400, 62230116888000
Offset: 0
a(9) = 40: 159|26|37|48, 15|26|37|48|9, 159|26|37|4|8, 15|26|37|4|8|9, 159|26|3|48|7, 15|26|3|48|7|9, 159|26|3|4|7|8, 15|26|3|4|7|8|9, 159|2|37|48|6, 15|2|37|48|6|9, 159|2|37|4|6|8, 15|2|37|4|6|8|9, 159|2|3|48|6|7, 15|2|3|48|6|7|9, 159|2|3|4|6|7|8, 15|2|3|4|6|7|8|9, 19|26|37|48|5, 1|26|37|48|59, 1|26|37|48|5|9, 19|26|37|4|5|8, 1|26|37|4|59|8, 1|26|37|4|5|8|9, 19|26|3|48|5|7, 1|26|3|48|59|7, 1|26|3|48|5|7|9, 19|26|3|4|5|7|8, 1|26|3|4|59|7|8, 1|26|3|4|5|7|8|9, 19|2|37|48|5|6, 1|2|37|48|59|6, 1|2|37|48|5|6|9, 19|2|37|4|5|6|8, 1|2|37|4|59|6|8, 1|2|37|4|5|6|8|9, 19|2|3|48|5|6|7, 1|2|3|48|59|6|7, 1|2|3|48|5|6|7|9, 19|2|3|4|5|6|7|8, 1|2|3|4|59|6|7|8, 1|2|3|4|5|6|7|8|9.
A275072
Number of set partitions of [n] such that i-j is a multiple of five for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 80, 200, 500, 1250, 3125, 9375, 28125, 84375, 253125, 759375, 2632500, 9126000, 31636800, 109674240, 380204032, 1484258048, 5794315072, 22620114608, 88305447412, 344730881243, 1489305334237, 6434092503083, 27796547414797
Offset: 0
a(9) = 16: 16|27|38|49|5, 16|27|38|4|5|9, 16|27|3|49|5|8, 16|27|3|4|5|8|9, 16|2|38|49|5|7, 16|2|38|4|5|7|9, 16|2|3|49|5|7|8, 16|2|3|4|5|7|8|9, 1|27|38|49|5|6, 1|27|38|4|5|6|9, 1|27|3|49|5|6|8, 1|27|3|4|5|6|8|9, 1|2|38|49|5|6|7, 1|2|38|4|5|6|7|9, 1|2|3|49|5|6|7|8, 1|2|3|4|5|6|7|8|9.
A275073
Number of set partitions of [n] such that i-j is a multiple of six for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 160, 400, 1000, 2500, 6250, 15625, 46875, 140625, 421875, 1265625, 3796875, 11390625, 39487500, 136890000, 474552000, 1645113600, 5703060480, 19770609664, 77181418496, 301304383744, 1176245959616, 4591883265424
Offset: 0
a(9) = 8: 17|28|39|4|5|6, 17|28|3|4|5|6|9, 17|2|39|4|5|6|8, 17|2|3|4|5|6|8|9, 1|28|39|4|5|6|7, 1|28|3|4|5|6|7|9, 1|2|39|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
A275074
Number of set partitions of [n] such that i-j is a multiple of seven for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 320, 800, 2000, 5000, 12500, 31250, 78125, 234375, 703125, 2109375, 6328125, 18984375, 56953125, 170859375, 592312500, 2053350000, 7118280000, 24676704000, 85545907200, 296559144960, 1028071702528
Offset: 0
a(9) = 4: 18|29|3|4|5|6|7, 18|2|3|4|5|6|7|9, 1|29|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
A275075
Number of set partitions of [n] such that i-j is a multiple of eight for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 640, 1600, 4000, 10000, 25000, 62500, 156250, 390625, 1171875, 3515625, 10546875, 31640625, 94921875, 284765625, 854296875, 2562890625, 8884687500, 30800250000, 106774200000, 370150560000, 1283188608000
Offset: 0
a(9) = 2: 19|2|3|4|5|6|7|8, 1|2|3|4|5|6|7|8|9.
A275076
Number of set partitions of [n] such that i-j is a multiple of nine for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1280, 3200, 8000, 20000, 50000, 125000, 312500, 781250, 1953125, 5859375, 17578125, 52734375, 158203125, 474609375, 1423828125, 4271484375, 12814453125, 38443359375, 133270312500, 462003750000
Offset: 0
A275077
Number of set partitions of [n] such that i-j is a multiple of ten for all i,j belonging to the same block.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2560, 6400, 16000, 40000, 100000, 250000, 625000, 1562500, 3906250, 9765625, 29296875, 87890625, 263671875, 791015625, 2373046875, 7119140625, 21357421875, 64072265625, 192216796875
Offset: 0
Showing 1-9 of 9 results.