A275114 Primes p for which the sum of the numbers in the Collatz iteration (A033493) of p is a prime.
2, 67, 149, 163, 229, 359, 373, 401, 571, 719, 727, 827, 919, 941, 1031, 1049, 1129, 1153, 1201, 1283, 1307, 1319, 1433, 1453, 1627, 1637, 1987, 2017, 2089, 2137, 2237, 2267, 2281, 2351, 2543, 2617, 2731, 2819, 2851, 2861, 2927, 2969, 3191, 3253, 3581, 3671, 3719
Offset: 1
Keywords
Examples
Prime 67 with Collatz trajectory (67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1) is a term because A033493(67) = 1459 (prime).
Links
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
Programs
-
Magma
[n: n in [1..4000] | IsPrime(&+[k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]) and IsPrime(n)];
-
Mathematica
Select[Prime@ Range@ 540, PrimeQ[Total@ FixedPointList[Which[# == 1, 1, EvenQ@ #, #/2, True, 3 # + 1] &, #] - 1] &] (* Michael De Vlieger, Jul 17 2016, after Alonso del Arte at A033493 *)
Comments