cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A275129 Number of nX6 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

122, 1024, 2607, 11092, 71576, 473185, 3146574, 20970214, 139845553, 930732169, 6190918966, 41214051338, 274484938098, 1827596183195, 12167228578454, 81014307245606, 539449424460354, 3591778777900364, 23914435700214624
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Column 6 of A275131.

Examples

			Some solutions for n=4
..0..0..0..1..1..1. .0..0..1..1..1..2. .0..0..1..2..1..2. .0..0..0..1..1..2
..1..1..2..0..2..0. .2..2..0..0..0..1. .1..2..0..0..0..1. .1..1..2..2..0..1
..2..0..1..1..1..2. .0..1..2..1..2..0. .0..1..2..2..2..0. .0..0..1..1..2..2
..1..2..0..0..0..1. .2..0..0..0..1..2. .2..0..0..1..1..1. .2..2..0..0..1..0
		

Crossrefs

Cf. A275131.

Formula

Empirical recurrence of order 67 (see link above)

A275126 Number of n X 3 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

5, 16, 45, 129, 373, 1083, 3148, 9157, 26623, 77372, 224857, 653525, 1899462, 5520787, 16046124, 46637722, 135551305, 393976458, 1145083415, 3328158969, 9673218248, 28114986916, 81715561920, 237504397813, 690301064559
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1. .0..1..1
..2..0..1. .1..1..2. .1..1..1. .2..2..2. .1..1..1. .2..2..0. .2..2..0
..1..2..2. .2..0..1. .2..2..2. .0..1..1. .2..0..2. .0..1..1. .1..1..1
..0..1..0. .1..2..0. .1..1..0. .2..0..0. .1..1..0. .2..0..0. .0..2..0
		

Crossrefs

Column 3 of A275131.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 4*a(n-3) + a(n-4) + 3*a(n-5) + 8*a(n-6) + a(n-7) - 3*a(n-8) - a(n-9) for n>10.
Empirical g.f.: x*(5 + x + 7*x^2 + 6*x^3 + 7*x^4 + 11*x^5 - 4*x^6 - 10*x^7 - 5*x^8 - x^9) / (1 - 3*x + 2*x^2 - 4*x^3 - x^4 - 3*x^5 - 8*x^6 - x^7 + 3*x^8 + x^9). - Colin Barker, Jan 31 2019

A275127 Number of nX4 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

14, 64, 174, 568, 2178, 8321, 31772, 121707, 466252, 1783920, 6825273, 26122839, 99981686, 382636173, 1464403303, 5604594713, 21449747744, 82091326930, 314176968483, 1202409074708, 4601819411125, 17611921823170, 67403757335393
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Column 4 of A275131.

Examples

			Some solutions for n=4
..0..1..1..2. .0..1..1..2. .0..0..0..1. .0..0..1..1. .0..0..0..1
..2..0..0..1. .2..0..0..0. .1..1..2..2. .1..2..2..0. .2..1..2..2
..1..2..2..2. .1..1..1..2. .2..0..1..1. .0..1..1..1. .0..0..1..1
..0..1..0..1. .2..2..0..1. .1..2..0..0. .2..0..2..0. .2..2..0..0
		

Crossrefs

Cf. A275131.

Formula

Empirical: a(n) = 5*a(n-1) -9*a(n-2) +19*a(n-3) -9*a(n-4) -9*a(n-5) +87*a(n-6) -46*a(n-7) -84*a(n-8) +7*a(n-9) -59*a(n-10) -45*a(n-11) +31*a(n-12) +23*a(n-13) +4*a(n-14) -a(n-15) -a(n-16) +a(n-17) for n>20

A275128 Number of nX5 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

41, 256, 675, 2545, 12423, 62378, 315021, 1591442, 8024937, 40445177, 203778488, 1026594464, 5172646773, 26068048495, 131374129725, 662045442417, 3336258461916, 16812605674569, 84724677500065, 426956397683686
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Column 5 of A275131.

Examples

			Some solutions for n=4
..0..1..0..2..1. .0..1..1..2..2. .0..0..1..1..2. .0..0..0..1..1
..2..2..1..0..0. .2..0..0..1..1. .2..2..0..0..0. .1..1..2..2..0
..0..0..2..2..2. .1..2..2..0..0. .0..1..1..2..2. .0..0..1..1..2
..2..1..1..1..0. .0..1..1..2..2. .2..0..0..1..1. .2..2..0..0..1
		

Crossrefs

Cf. A275131.

Formula

Empirical: a(n) = 8*a(n-1) -27*a(n-2) +79*a(n-3) -99*a(n-4) -81*a(n-5) +860*a(n-6) -1162*a(n-7) -868*a(n-8) +1676*a(n-9) -3352*a(n-10) -1549*a(n-11) +4857*a(n-12) +1164*a(n-13) +3213*a(n-14) +5946*a(n-15) -1377*a(n-16) -5652*a(n-17) -4880*a(n-18) -2760*a(n-19) -710*a(n-20) +595*a(n-21) +1142*a(n-22) +594*a(n-23) +71*a(n-24) +48*a(n-25) +20*a(n-26) +a(n-28) for n>31

A275130 Number of nX7 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

365, 4096, 10077, 48451, 412306, 3586068, 31446544, 276145917, 2432426709, 21443562178, 188954647355, 1664477862236, 14666416028009, 129260090882281, 1139083482681178, 10037066997078506, 88448338430227606, 779467930298530878
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Column 7 of A275131.

Examples

			Some solutions for n=4
..0..0..1..1..2..2..0. .0..1..1..1..2..2..0. .0..1..1..2..2..0..0
..2..2..0..0..0..1..1. .2..2..2..0..1..1..1. .2..0..0..1..1..1..2
..1..1..2..2..2..2..0. .0..1..1..2..2..2..0. .1..1..2..0..2..0..0
..2..0..0..1..1..1..2. .2..2..0..1..0..1..2. .2..0..1..1..1..2..2
		

Crossrefs

Cf. A275131.

A275132 Number of 3 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

2, 12, 45, 174, 675, 2607, 10077, 38967, 150651, 582435, 2251827, 8706015, 33659139, 130132935, 503119779, 1945160703, 7520376939, 29075268471, 112410752211, 434602254687, 1680258482619, 6496212425799, 25115645192451, 97102063806447
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..2. .0..0..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1
..2..2..0..0. .1..1..2..0. .2..2..2..2. .2..2..0..0. .2..2..0..0
..1..1..1..2. .0..0..1..1. .0..1..1..0. .0..1..2..2. .0..1..1..2
		

Crossrefs

Row 3 of A275131.

Formula

Empirical: a(n) = 3*a(n-1) + 2*a(n-2) + 6*a(n-3) - 2*a(n-4) - 4*a(n-5) for n>6.
Empirical g.f.: x*(2 + 6*x + 5*x^2 + 3*x^3 - 5*x^4 - 4*x^5) / ((1 + x + 2*x^2)*(1 - 4*x + 2*x^3)). - Colin Barker, Jan 31 2019

A275133 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

4, 36, 129, 568, 2545, 11092, 48451, 212897, 933888, 4092697, 17946318, 78700481, 345078541, 1513083403, 6634687537, 29092060534, 127563508661, 559344843153, 2452635533674, 10754397617406, 47156241405767, 206772290181505
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..1. .0..0..1..1. .0..0..1..2. .0..0..1..0. .0..0..0..1
..2..2..0..0. .2..2..0..0. .1..2..0..0. .2..2..2..2. .1..1..2..0
..1..1..1..2. .0..1..2..2. .0..1..1..1. .0..0..1..1. .0..0..1..2
..0..0..0..1. .2..0..0..0. .2..2..0..0. .2..2..0..0. .2..2..0..0
		

Crossrefs

Row 4 of A275131.

Formula

Empirical: a(n) = a(n-1) + 8*a(n-2) + 22*a(n-3) + 36*a(n-4) + 7*a(n-5) - 48*a(n-6) - 4*a(n-7) + 15*a(n-8) - 18*a(n-9) for n>11.
Empirical g.f.: x*(4 + 32*x + 61*x^2 + 63*x^3 + 9*x^4 - 159*x^5 - 201*x^6 + 113*x^7 + 39*x^8 - 104*x^9 + 48*x^10) / (1 - x - 8*x^2 - 22*x^3 - 36*x^4 - 7*x^5 + 48*x^6 + 4*x^7 - 15*x^8 + 18*x^9). - Colin Barker, Jan 31 2019

A275134 Number of 5Xn 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

8, 108, 373, 2178, 12423, 71576, 412306, 2381629, 13727957, 79158451, 456572944, 2633093481, 15185124732, 87573269532, 505049273961, 2912660248825, 16797581275481, 96873339396362, 558678129749247, 3221951115220504
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 5 of A275131.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..2..1. .0..1..0..2. .0..0..1..1. .0..1..0..0
..2..2..2..0. .2..0..0..0. .2..2..1..1. .1..2..2..0. .2..2..1..1
..1..1..1..2. .1..1..2..2. .0..0..2..0. .0..1..1..2. .0..0..2..2
..2..2..0..1. .0..0..0..1. .2..1..1..1. .2..2..0..1. .1..1..0..0
..1..1..2..2. .1..1..2..0. .0..2..2..2. .0..1..2..2. .2..2..2..1
		

Crossrefs

Cf. A275131.

Formula

Empirical: a(n) = a(n-1) +16*a(n-2) +49*a(n-3) +109*a(n-4) +31*a(n-5) -508*a(n-6) +75*a(n-7) +324*a(n-8) -972*a(n-9) +260*a(n-10) for n>14

A275135 Number of 6Xn 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

16, 324, 1083, 8321, 62378, 473185, 3586068, 27224209, 206864716, 1571281413, 11942779144, 90722922402, 689405748706, 5238174766697, 39801761785044, 302425691696718, 2297924356585952, 17460451254284279, 132669830674540739
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 6 of A275131.

Examples

			Some solutions for n=4
..0..1..0..1. .0..0..1..2. .0..0..0..0. .0..0..1..0. .0..1..1..1
..2..2..2..0. .2..2..0..0. .1..2..1..1. .2..2..2..2. .2..2..0..0
..1..1..1..2. .1..1..2..1. .0..0..2..2. .1..0..1..1. .0..1..1..2
..0..0..0..0. .2..0..0..0. .1..1..0..0. .2..2..0..0. .2..2..0..1
..1..1..2..2. .1..1..2..2. .2..2..2..2. .1..1..2..2. .0..1..2..2
..0..0..1..1. .0..0..0..1. .0..1..0..0. .0..0..1..1. .2..0..0..1
		

Crossrefs

Cf. A275131.

Formula

Empirical: a(n) = a(n-1) +32*a(n-2) +117*a(n-3) +301*a(n-4) -196*a(n-5) -6255*a(n-6) -3361*a(n-7) -3603*a(n-8) -22745*a(n-9) +165021*a(n-10) +8504*a(n-11) -100758*a(n-12) +692296*a(n-13) -1045155*a(n-14) -356088*a(n-15) +1094300*a(n-16) -3137949*a(n-17) +2346676*a(n-18) +3048039*a(n-19) -3364817*a(n-20) +4783757*a(n-21) +1001864*a(n-22) -4054644*a(n-23) +818224*a(n-24) -774400*a(n-26) for n>28

A275136 Number of 7 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

32, 972, 3148, 31772, 315021, 3146574, 31446544, 315531602, 3172042022, 31863778966, 320131530703, 3216908659843, 32328900869180, 324884120562167, 3264789400925918, 32809744239367085, 329717318770636840
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 7 of A275131.

Examples

			Some solutions for n=4
..0..1..0..0. .0..0..1..0. .0..0..0..0. .0..1..0..2. .0..1..0..0
..2..2..1..1. .2..2..2..2. .1..1..1..1. .2..2..1..0. .2..2..1..1
..1..0..2..2. .1..1..1..1. .0..2..2..2. .1..0..2..2. .1..0..2..2
..2..1..1..1. .2..2..0..0. .1..0..0..0. .2..1..1..0. .2..1..0..0
..0..2..0..2. .0..1..2..2. .2..1..1..1. .0..2..2..2. .0..2..2..2
..1..1..1..0. .2..0..0..1. .0..2..2..2. .1..0..1..0. .1..0..0..0
..0..0..2..1. .1..2..2..0. .1..0..1..0. .2..2..2..1. .2..2..1..1
		

Crossrefs

Cf. A275131.

Formula

Empirical recurrence of order 53 (see link above).
Showing 1-10 of 11 results. Next