cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275142 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 6, 5, 4, 16, 36, 14, 8, 48, 80, 216, 41, 16, 144, 224, 400, 1296, 122, 32, 432, 528, 1088, 2000, 7776, 365, 64, 1296, 1216, 2320, 5248, 10000, 46656, 1094, 128, 3888, 2816, 6464, 9744, 25344, 50000, 279936, 3281, 256, 11664, 6544, 17872, 32384, 41360
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Table starts
....1........1.......2........4........8........16........32.........64
....2........6......16.......48......144.......432......1296.......3888
....5.......36......80......224......528......1216......2816.......6544
...14......216.....400.....1088.....2320......6464.....17872......49792
...41.....1296....2000.....5248.....9744.....32384....107472.....362176
..122.....7776...10000....25344....41360....165568....663904....2695808
..365....46656...50000...122368...175120....841536...4055152...19906560
.1094...279936..250000...590848...741904...4283968..24875600..147762240
.3281..1679616.1250000..2852864..3142672..21800000.152379136.1093999424
.9842.10077696.6250000.13774848.13312656.110943552.933805200.8109111360

Examples

			Some solutions for n=5 k=4
..0..1..2..1. .0..1..0..1. .0..1..0..2. .0..1..2..1. .0..1..2..0
..2..0..1..0. .0..2..1..2. .2..0..1..2. .2..0..2..0. .0..1..2..0
..2..0..1..2. .1..2..1..0. .1..2..1..2. .2..0..1..2. .2..0..2..0
..1..2..0..1. .0..1..2..1. .0..2..0..1. .2..0..1..2. .2..0..1..2
..0..2..0..1. .2..1..2..0. .0..1..2..0. .1..2..0..2. .0..1..0..1
		

Crossrefs

Column 1 is A007051(n-1).
Column 2 is A000400(n-1).
Column 3 is A055842.
Row 1 is A000079(n-2).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1)
k=3: a(n) = 5*a(n-1) for n>2
k=4: a(n) = 4*a(n-1) +4*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) +5*a(n-2) +a(n-3) for n>4
k=6: a(n) = 3*a(n-1) +10*a(n-2) +4*a(n-3) -4*a(n-4) for n>6
k=7: a(n) = 3*a(n-1) +18*a(n-2) +11*a(n-3) -23*a(n-4) -4*a(n-5) for n>7
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>3
n=3: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) for n>5
n=4: a(n) = 5*a(n-1) -9*a(n-2) +10*a(n-3) -6*a(n-4) +a(n-5) for n>9
n=5: [order 8] for n>12
n=6: [order 13] for n>18
n=7: [order 21] for n>27