A275142 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.
1, 1, 2, 2, 6, 5, 4, 16, 36, 14, 8, 48, 80, 216, 41, 16, 144, 224, 400, 1296, 122, 32, 432, 528, 1088, 2000, 7776, 365, 64, 1296, 1216, 2320, 5248, 10000, 46656, 1094, 128, 3888, 2816, 6464, 9744, 25344, 50000, 279936, 3281, 256, 11664, 6544, 17872, 32384, 41360
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..2..1. .0..1..0..1. .0..1..0..2. .0..1..2..1. .0..1..2..0 ..2..0..1..0. .0..2..1..2. .2..0..1..2. .2..0..2..0. .0..1..2..0 ..2..0..1..2. .1..2..1..0. .1..2..1..2. .2..0..1..2. .2..0..2..0 ..1..2..0..1. .0..1..2..1. .0..2..0..1. .2..0..1..2. .2..0..1..2 ..0..2..0..1. .2..1..2..0. .0..1..2..0. .1..2..0..2. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..721
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1)
k=3: a(n) = 5*a(n-1) for n>2
k=4: a(n) = 4*a(n-1) +4*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) +5*a(n-2) +a(n-3) for n>4
k=6: a(n) = 3*a(n-1) +10*a(n-2) +4*a(n-3) -4*a(n-4) for n>6
k=7: a(n) = 3*a(n-1) +18*a(n-2) +11*a(n-3) -23*a(n-4) -4*a(n-5) for n>7
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>3
n=3: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) for n>5
n=4: a(n) = 5*a(n-1) -9*a(n-2) +10*a(n-3) -6*a(n-4) +a(n-5) for n>9
n=5: [order 8] for n>12
n=6: [order 13] for n>18
n=7: [order 21] for n>27
Comments