A275150 Number of ordered ways to write n as x^3 + 2*y^2 + k*z^2, where x,y,z are nonnegative integers, k is 1 or 5, and k = 1 if z = 0.
1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 1, 2, 4, 3, 4, 3, 2, 2, 3, 3, 3, 3, 4, 5, 2, 3, 2, 3, 5, 4, 4, 5, 3, 4, 3, 2, 3, 2, 2, 5, 5, 4, 2, 2, 5, 3, 5, 5, 3, 5, 5, 2, 3, 3, 4, 4, 2, 2, 4, 4, 6, 3, 5, 4, 2, 3, 4, 5, 5, 4, 4, 5, 5, 5, 1, 5
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 0^3 + 2*0^2 + 0^2. a(15) = 1 since 15 = 2^3 + 2*1^2 + 5*1^2. a(79) = 1 since 79 = 3^3 + 2*4^2 + 5*2^2. a(120) = 1 since 120 = 2^3 + 2*4^2 + 5*4^2. a(218) = 1 since 218 = 6^3 + 2*1^2 + 0^2. a(399) = 1 since 399 = 5^3 + 2*3^2 + 16^2. a(454) = 1 since 454 = 0^3 + 2*15^2 + 2^2. a(622) = 1 since 622 = 2^3 + 2*17^2 + 6^2. a(725) = 1 since 725 = 5^3 + 2*10^2 + 20^2. a(3240) = 1 since 3240 = 7^3 + 2*38^2 + 3^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- G. Doyle and K. S. Williams, A positive-definite ternary quadratic form does not represent all positive integers, Integers 17 (2017), #A41, 19pp (electronic).
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] TQ[n_]:=TQ[n]=SQ[n]||SQ[n/5] Do[r=0;Do[If[TQ[n-x^3-2*y^2],r=r+1],{x,0,n^(1/3)},{y,0,Sqrt[(n-x^3)/2]}];Print[n," ",r];Continue,{n,0,80}]
Comments