A275151 a(1) = 8; a(n) = 3*a(n-1) + 2*sqrt(2*a(n-1)*(a(n-1)-7)) - 7 for n > 1.
8, 25, 128, 729, 4232, 24649, 143648, 837225, 4879688, 28440889, 165765632, 966152889, 5631151688, 32820757225, 191293391648, 1114939592649, 6498344164232, 37875125392729, 220752408192128, 1286639323760025, 7499083534368008, 43707861882448009, 254748087760320032, 1484780664679472169
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 54, 56.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Crossrefs
Cf. A055997.
Programs
-
Magma
I:=[8]; [n le 1 select I[n] else Floor(3*Self(n-1) +2*Sqrt(2*Self(n-1)*(Self(n-1) - 7)) -7): n in [1..30]]; // G. C. Greubel, Oct 07 2018
-
Maple
a:= proc(n) option remember; `if`(n=1, 8, 3*a(n-1)+2*isqrt(2*a(n-1)*(a(n-1)-7))-7) end: seq(a(n), n=1..25);
-
Mathematica
NestList[3 # + 2 Sqrt[2 # (# - 7)] - 7 &, 8, 23] (* Michael De Vlieger, Jul 18 2016 *)
-
PARI
m=30; v=concat([8], vector(m-1)); for(n=2, m, v[n] = floor(3*v[n-1] +2*sqrt(2*v[n-1]*(v[n-1]-7))-7)); v \\ G. C. Greubel, Oct 07 2018
Formula
a(n) = 3*a(n-1) + 2*sqrt(2*a(n-1)*(a(n-1)-7)) - 7, for n > 1, with a(1)=8.
Conjectures from Colin Barker, Jul 19 2016: (Start)
a(n) = (14 + (11-6*sqrt(2))*(3+2*sqrt(2))^n + (3-2*sqrt(2))^n*(11+6*sqrt(2)))/4.
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 3.
G.f.: x*(8 - 31*x + 9*x^2) / ((1-x)*(1 - 6*x + x^2)). (End)
Comments