cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275176 a(n) = (3 * a(n-3) + a(n-1) * a(n-5)) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 7, 10, 22, 43, 202, 370, 547, 1264, 2521, 11881, 21781, 32221, 74521, 148681, 700744, 1284667, 1900450, 4395442, 8769643, 41331982, 75773530, 112094287, 259256524, 517260241, 2437886161, 4469353561, 6611662441, 15291739441, 30509584561
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2016

Keywords

Comments

Inspired by A048736.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (3 a[n - 3] + a[n - 1] a[n - 5])/a[n - 6], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == 1, a[6] == 1}, a, {n, 36}] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -59*x^5 -56*x^6 -53*x^7 -50*x^8 -38*x^9 +43*x^10 +22*x^11 +10*x^12 +7*x^13 +4*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -59*x^5 +x^10)) + O(x^50)) \\ Colin Barker, Jul 19 2016
  • Ruby
    def A(k, l, n)
      a = Array.new(k * 2, 1)
      ary = [1]
      while ary.size < n + 1
        break if (a[1] * a[-1] + a[k] * l) % a[0] > 0
        a = *a[1..-1], (a[1] * a[-1] + a[k] * l) / a[0]
        ary << a[0]
      end
      ary
    end
    def A275176(n)
      A(3, 3, n)
    end
    

Formula

G.f.: (1 +x +x^2 +x^3 +x^4 -59*x^5 -56*x^6 -53*x^7 -50*x^8 -38*x^9 +43*x^10 +22*x^11 +10*x^12 +7*x^13 +4*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -59*x^5 +x^10)). - Colin Barker, Jul 19 2016
a(n) = 60*a(n-5) - 60*a(n-10) + a(n-15).