cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275183 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 1, 5, 4, 2, 14, 16, 7, 4, 41, 64, 25, 12, 8, 122, 256, 89, 41, 21, 16, 365, 1024, 317, 141, 85, 37, 32, 1094, 4096, 1129, 482, 353, 181, 65, 64, 3281, 16384, 4021, 1651, 1465, 914, 389, 114, 128, 9842, 65536, 14321, 5653, 6081, 4603, 2386, 834, 200, 256, 29525
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Comments

Table starts
...1...2....5....14.....41.....122......365......1094.......3281........9842
...1...4...16....64....256....1024.....4096.....16384......65536......262144
...2...7...25....89....317....1129.....4021.....14321......51005......181657
...4..12...41...141....482....1651.....5653.....19356......66277......226937
...8..21...85...353...1465....6081....25241....104769.....434873.....1805057
..16..37..181...914...4603...23313...117916....596625....3018913....15274618
..32..65..389..2386..14643...90793...561044...3472521...21488129...132962186
..64.114..834..6228..46799..355258..2688402..20397794..154665843..1172975241
.128.200.1781.16249.149772.1392050.12931103.120384453.1120217646.10428404709
.256.351.3799.42451.479722.5466938.62408531.713359905.8156812360.93298660085

Examples

			Some solutions for n=4 k=4
..0..0..1..2. .0..1..1..2. .0..0..1..1. .0..0..1..2. .0..0..0..1
..2..2..0..1. .2..0..0..1. .2..2..0..0. .2..2..0..1. .1..2..2..0
..0..1..2..0. .1..2..2..2. .0..1..1..2. .1..1..2..2. .0..1..1..2
..2..0..1..2. .0..0..1..1. .2..0..0..1. .0..0..0..1. .2..2..0..0
		

Crossrefs

Column 1 is A000079(n-2).
Column 2 is A005251(n+3).
Row 1 is A007051(n-1).
Row 2 is A000302(n-1).
Row 3 is A007484(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +5*a(n-3) -a(n-4) -a(n-5) for n>8
k=4: [order 9] for n>12
k=5: [order 16] for n>21
k=6: [order 34] for n>39
k=7: [order 67] for n>73
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 3*a(n-1) +2*a(n-2)
n=4: a(n) = 2*a(n-1) +4*a(n-2) +3*a(n-3) for n>4
n=5: a(n) = 2*a(n-1) +7*a(n-2) +8*a(n-3) for n>5
n=6: a(n) = 2*a(n-1) +12*a(n-2) +19*a(n-3) -4*a(n-4) -12*a(n-5) -16*a(n-6) for n>7
n=7: [order 9] for n>10