A275183 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.
1, 2, 1, 5, 4, 2, 14, 16, 7, 4, 41, 64, 25, 12, 8, 122, 256, 89, 41, 21, 16, 365, 1024, 317, 141, 85, 37, 32, 1094, 4096, 1129, 482, 353, 181, 65, 64, 3281, 16384, 4021, 1651, 1465, 914, 389, 114, 128, 9842, 65536, 14321, 5653, 6081, 4603, 2386, 834, 200, 256, 29525
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..2. .0..1..1..2. .0..0..1..1. .0..0..1..2. .0..0..0..1 ..2..2..0..1. .2..0..0..1. .2..2..0..0. .2..2..0..1. .1..2..2..0 ..0..1..2..0. .1..2..2..2. .0..1..1..2. .1..1..2..2. .0..1..1..2 ..2..0..1..2. .0..0..1..1. .2..0..0..1. .0..0..0..1. .2..2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..364
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +5*a(n-3) -a(n-4) -a(n-5) for n>8
k=4: [order 9] for n>12
k=5: [order 16] for n>21
k=6: [order 34] for n>39
k=7: [order 67] for n>73
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 3*a(n-1) +2*a(n-2)
n=4: a(n) = 2*a(n-1) +4*a(n-2) +3*a(n-3) for n>4
n=5: a(n) = 2*a(n-1) +7*a(n-2) +8*a(n-3) for n>5
n=6: a(n) = 2*a(n-1) +12*a(n-2) +19*a(n-3) -4*a(n-4) -12*a(n-5) -16*a(n-6) for n>7
n=7: [order 9] for n>10
Comments