cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309229 Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k).

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1
Offset: 1

Views

Author

Mats Granvik, Aug 10 2019

Keywords

Comments

log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k).
Partial sums of the symmetric matrix A191898. - Mats Granvik, Apr 12 2020
1 + Sum_{k=1..2*n} sign((sign(n+Sum_{j=2..k}-|T(n,j)|)+1)) appears to be asymptotic to sqrt(8*n). - Mats Granvik, Jun 08 2020
From Mats Granvik, Apr 14 2021: (Start)
Conjecture 1: For n>1: max(T(1..n,n)) + min(T(1..n,n)) = 2*mean(T(1..n,n)) = -A023900(n).
Patterns that eventually fail or possibly become switched are:
max(T(n,1..n!)) = 1,2,3,4,5,6,7,8,...
min(T(n,1..n!)) = 1,0,-2,-3,-7,-5,-11,-12,...
which are the first 8 terms of A275205.
Conjecture 2: The Prime Number Theorem should imply: mean(T(n,1..n!)) = 1.
(End)

Examples

			   1, 1, 1, 1, 1,  1, 1, 1, 1,  1,  1,  1,  1,  1, ...
   2, 0, 2, 0, 2,  0, 2, 0, 2,  0,  2,  0,  2,  0, ...
   3, 1, 0, 1, 3, -2, 3, 1, 0,  1,  3, -2,  3,  1, ...
   4, 0, 1, 0, 4, -3, 4, 0, 1,  0,  4, -3,  4,  0, ...
   5, 1, 2, 1, 0, -2, 5, 1, 2, -4,  5, -2,  5,  1, ...
   6, 0, 0, 0, 1,  0, 6, 0, 0, -5,  6,  0,  6,  0, ...
   7, 1, 1, 1, 2,  1, 0, 1, 1, -4,  7,  1,  7, -6, ...
   8, 0, 2, 0, 3,  0, 1, 0, 2, -5,  8,  0,  8, -7, ...
   9, 1, 0, 1, 4, -2, 2, 1, 0, -4,  9, -2,  9, -6, ...
  10, 0, 1, 0, 0, -3, 3, 0, 1,  0, 10, -3, 10, -7, ...
  11, 1, 2, 1, 1, -2, 4, 1, 2,  1,  0, -2, 11, -6, ...
  12, 0, 0, 0, 2,  0, 5, 0, 0,  0,  1,  0, 12, -7, ...
  13, 1, 1, 1, 3,  1, 6, 1, 1,  1,  2,  1,  0, -6, ...
  14, 0, 2, 0, 4,  0, 0, 0, 2,  0,  3,  0,  1,  0, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *)

Formula

Recurrence:
T(n, 1) = [n >= 1]*n;
T(1, k) = 1;
T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020
T(n,k) = Sum_{i=1..n} A191898(i,k).

A309192 a(n) = Sum_{k=1..n} mu(k)^2 * k * floor(n/k).

Original entry on oeis.org

1, 4, 8, 11, 17, 29, 37, 40, 44, 62, 74, 86, 100, 124, 148, 151, 169, 181, 201, 219, 251, 287, 311, 323, 329, 371, 375, 399, 429, 501, 533, 536, 584, 638, 686, 698, 736, 796, 852, 870, 912, 1008, 1052, 1088, 1112, 1184, 1232, 1244, 1252, 1270, 1342, 1384, 1438, 1450, 1522
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 16 2019

Keywords

Comments

Partial sums of A048250.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]^2 k Floor[n/k], {k, 1, n}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[1/(1 - x) Sum[MoebiusMu[k]^2 k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Accumulate[Table[Total[Select[Divisors[n], SquareFreeQ]], {n, 1, 100}]] (* Vaclav Kotesovec, Jul 16 2019 *)

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)^2 * k * x^k/(1 - x^k).
a(n) ~ n^2/2. - Vaclav Kotesovec, Jul 16 2019
Showing 1-2 of 2 results.