A275206 Expansion of (A(x)^2 - A(x^2))/2 where A(x) = A000108(x) - 1.
0, 0, 0, 2, 6, 24, 80, 286, 994, 3536, 12576, 45220, 163372, 594320, 2172768, 7983990, 29464010, 109174560, 405990464, 1514797020, 5669004692, 21275014800, 80047213792, 301892460012, 1141068949396, 4321730134624, 16399422014400, 62340424959176, 237373155238104, 905251034394784
Offset: 0
Keywords
Programs
-
Mathematica
A[x_] = (1 - Sqrt[1 - 4x])/(2x) - 1; CoefficientList[(A[x]^2 - A[x^2])/2 + O[x]^30, x] (* Jean-François Alcover, Apr 30 2023 *)
Formula
a(2*n+1) = A007223(2*n+1).
Conjecture: a(n) = 2*A050182(n-2) for n >= 2.
From Petros Hadjicostas, Jul 27 2020: (Start)
a(n) = (-2*c(n) + c(n+1) - [(n mod 2) == 0]*c(n/2))/2 for n >= 1, where c = A000108.
a(n) = (1/n)*(binomial(2*n, n-2) - [(n mod 2) == 0]*binomial(n, (n/2) - 1)) for n >= 2. (End)
D-finite with recurrence: 5*(n-3)*(n+2)*(n+1)*a(n) + 32*(n-5)*(n-6)*(2*n-11)*a(n-6) + 80*(n-5)*(n-4)*(n-3)*a(n-5) - 40*(n-4)*(7*n^2-35*n+39)*a(n-4) + (120*n^3 - 600*n^2 + 660*n + 60)*a(n-3) + 2*(n-5)*(23*n^2-44*n+6)*a(n-2) - 5*(n+1)*(7*n^2-25*n+6)*a(n-1) = 0. - Georg Fischer, Feb 12 2025
Comments