cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275206 Expansion of (A(x)^2 - A(x^2))/2 where A(x) = A000108(x) - 1.

Original entry on oeis.org

0, 0, 0, 2, 6, 24, 80, 286, 994, 3536, 12576, 45220, 163372, 594320, 2172768, 7983990, 29464010, 109174560, 405990464, 1514797020, 5669004692, 21275014800, 80047213792, 301892460012, 1141068949396, 4321730134624, 16399422014400, 62340424959176, 237373155238104, 905251034394784
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2016

Keywords

Comments

Number of ways to distribute n pairs of parentheses into 2 distinct patterns where each pattern represents a Catalan ordering (A000108), and each pattern must contain at least one pair of parentheses.
If one of the groups is allowed to have no parentheses, we arrive at A000150 (with a different offset).
Analog of A216785 with Catalan number replacing connected graph counts.
From Petros Hadjicostas, Jul 27 2020: (Start)
It is proved in A050182 that A050182(n) = 1/(2*n + 4)*(binomial(2*n + 4, n) - [(n mod 2) == 0]*binomial(n + 2, n/2)).
Let C(x) = A(x) + 1 = Sum_{n >= 0} c(n)*x^n be the g.f. of the Catalan numbers A000108. Then C(x)^2 = (C(x) - 1)/x. Then (A(x) + 1)^2 = A(x)/x, and thus, A(x)^2 = -2*A(x) - 1 + A(x)/x. Thus, (A(x)^2 - A(x^2))/2 = (-2*A(x) - 1 + A(x)/x - A(x^2))/2.
Substituting A(x) = Sum_{n >= 1} c(n)*x^n in the above expression, we get (after some algebra) that a(n) = (-2*c(n) + c(n+1) - [(n mod 2) == 0]*c(n/2))/2 for n >= 1. It is then easy to prove that a(n) = 2*A050182(n-2) = (1/n)*(binomial(2*n, n-2) - [(n mod 2) == 0]*binomial(n, (n/2) - 1)) for n >= 2, thus proving the conjecture below. (End)

Crossrefs

Programs

  • Mathematica
    A[x_] = (1 - Sqrt[1 - 4x])/(2x) - 1;
    CoefficientList[(A[x]^2 - A[x^2])/2 + O[x]^30, x] (* Jean-François Alcover, Apr 30 2023 *)

Formula

a(2*n+1) = A007223(2*n+1).
Conjecture: a(n) = 2*A050182(n-2) for n >= 2.
From Petros Hadjicostas, Jul 27 2020: (Start)
a(n) = (-2*c(n) + c(n+1) - [(n mod 2) == 0]*c(n/2))/2 for n >= 1, where c = A000108.
a(n) = (1/n)*(binomial(2*n, n-2) - [(n mod 2) == 0]*binomial(n, (n/2) - 1)) for n >= 2. (End)
D-finite with recurrence: 5*(n-3)*(n+2)*(n+1)*a(n) + 32*(n-5)*(n-6)*(2*n-11)*a(n-6) + 80*(n-5)*(n-4)*(n-3)*a(n-5) - 40*(n-4)*(7*n^2-35*n+39)*a(n-4) + (120*n^3 - 600*n^2 + 660*n + 60)*a(n-3) + 2*(n-5)*(23*n^2-44*n+6)*a(n-2) - 5*(n+1)*(7*n^2-25*n+6)*a(n-1) = 0. - Georg Fischer, Feb 12 2025