cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A275207 Expansion of (A(x)^2+A(x^2))/2 where A(x) = A001006(x).

Original entry on oeis.org

1, 1, 3, 6, 16, 38, 100, 256, 681, 1805, 4867, 13162, 35925, 98469, 271511, 751656, 2089963, 5831451, 16326785, 45847770, 129108926, 364498596, 1031486590, 2925337352, 8313215743, 23668977163, 67507773621, 192859753310, 551821400008, 1581188102590
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2016

Keywords

Comments

Analog of A275165 with Motzkin numbers replacing connected graph counts.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          ((3*(n-1))*b(n-2)+(1+2*n)*b(n-1))/(n+2))
        end:
    a:= proc(n) option remember; add(b(j)*b(n-j), j=0..n/2)-
          `if`(n::odd, 0, (t-> t*(t-1)/2)(b(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 19 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, 1, ((3*(n-1))*b[n-2] + (1+2*n)*b[n-1])/(n+2)];
    a[n_] := a[n] = Sum[b[j]*b[n-j], {j, 0, n/2}] - If[OddQ[n], 0, Function[t, t*(t-1)/2][b[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 16 2017, after Alois P. Heinz *)

Formula

a(2n+1) = A275208(2n+1).
Conjecture: a(2n+1) = A026940(n+1).
Conjecture D-finite with recurrence -3*(n+4)*(n+3)*(29*n-32)*a(n) +10*(29*n-40)*(n+3)*(n+2)*a(n-1) +2*(n+1)*(149*n^2 +208*n-450)*a(n-2) -2*n*(559*n^2 -381*n-1630)*a(n-3) +4*(-68*n^3 +531*n^2 -904*n+351)*a(n-4) +2*(103*n^3-1701*n^2+5330*n -3600)*a(n-5) +18*(11*n^3 -209*n^2 +834*n -778)*a(n-6) +6*n*(269*n-830)*(n-5)*a(n-7) +9*(n-5)*(n-6)*(95*n-134)*a(n-8)=0. - R. J. Mathar, Mar 07 2023
a(n) ~ 3^(n + 5/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023
Showing 1-1 of 1 results.