cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A275210 Expansion of (A(x)^2-A(x^2))/2 where A(x) = A001006(x)-1.

Original entry on oeis.org

0, 0, 0, 2, 5, 17, 45, 129, 349, 970, 2658, 7364, 20363, 56634, 157750, 441084, 1236173, 3474672, 9789568, 27648486, 78254719, 221951037, 630717569, 1795576937, 5120472435, 14625574662, 41837913310, 119851980508, 343798008165, 987445317761, 2839518208661
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2016

Keywords

Comments

Analog of A216785 with Motzkin numbers replacing connected graph counts.

Crossrefs

Cf. A275209.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          ((3*(n-1))*b(n-2)+(1+2*n)*b(n-1))/(n+2))
        end:
    a:= proc(n) option remember; add(b(j)*b(n-j), j=1..n/2)-
          `if`(n=0 or n::odd, 0, (t->t*(t+1)/2)(b(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 19 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, 1, ((3*(n-1))*b[n-2] + (1+2*n)*b[n-1])/(n+2)];
    a[n_] := a[n] = Sum[b[j]*b[n - j], {j, 1, n/2}] - If[n == 0 || OddQ[n], 0, Function[t, t*(t + 1)/2][b[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 16 2017, after Alois P. Heinz *)

Formula

a(2n+1) = A275209(2n+1).
Showing 1-1 of 1 results.