A275211 Numbers of the form p^^k, where p is prime, k > 1, and ^^ is the tetration operator: x^^y = x^x^...^x with y copies of x.
4, 16, 27, 3125, 65536, 823543, 285311670611, 7625597484987, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567
Offset: 1
Keywords
Examples
a(1) = 2^^2 = 2^2 = 4. a(2) = 2^^3 = 2^2^2 = 16. a(3) = 3^^2 = 3^3 = 27. a(4) = 5^^2 = 5^5 = 3125.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..79
- Wikipedia, Tetration
Crossrefs
Cf. A000040.
Programs
-
PARI
slogint(n,b)=if(nn<=lim, Set(v)) \\ Charles R Greathouse IV, Jul 19 2016
-
PARI
is(n)=my(p,e); e=isprimepower(n,&p); e && (e==p || (e%p==0 && is(e))) \\ Charles R Greathouse IV, Jul 19 2016
Formula
For any prime number, p, p tetrated x times, where x is any integer greater than 1, is a prime tetration.
Extensions
a(5) inserted, a(10)-a(12) corrected by Charles R Greathouse IV, Jul 19 2016