A275212 Triangle read by rows, T(n,k) = (n+k+1)! / ([(n-k)/2]! * [(n+k+2)/2]!) with [.] the floor function, for n>=0 and 0<=k<=n.
1, 2, 3, 3, 12, 20, 12, 20, 120, 210, 10, 120, 210, 1680, 3024, 60, 105, 1680, 3024, 30240, 55440, 35, 840, 1512, 30240, 55440, 665280, 1235520, 280, 504, 15120, 27720, 665280, 1235520, 17297280, 32432400, 126, 5040, 9240, 332640, 617760, 17297280, 32432400, 518918400, 980179200
Offset: 0
Examples
Triangle starts: [0] [1] [1] [2, 3] [2] [3, 12, 20] [3] [12, 20, 120, 210] [4] [10, 120, 210, 1680, 3024] [5] [60, 105, 1680, 3024, 30240, 55440] [6] [35, 840, 1512, 30240, 55440, 665280, 1235520] [7] [280, 504, 15120, 27720, 665280, 1235520, 17297280, 32432400]
Programs
-
Mathematica
Table[(n+k+1)!/(Floor[(n-k)/2]!Floor[(n+k+2)/2]!),{n,0,10},{k,0,n}]// Flatten (* Harvey P. Dale, Mar 27 2019 *)
-
Sage
def T(n, k): return factorial(n+k+1)//(factorial((n-k)//2)*factorial((n+k+2)//2)) for n in (0..7): print([T(n,k) for k in (0..n)])