A275236 Numbers k such that (28*10^k - 97)/3 is prime.
1, 5, 8, 20, 27, 56, 74, 81, 107, 217, 294, 326, 525, 645, 667, 764, 863, 1885, 1961, 2913, 3056, 3192, 3327, 5480, 8455, 22797, 50147, 89141, 96265
Offset: 1
Examples
5 is in this sequence because (28*10^5-97)/3 = 877 is prime. Initial terms and associated primes: a(1) = 1, 61; a(2) = 5, 933301; a(3) = 8, 933333301; a(4) = 20, 933333333333333333301; a(5) = 27, 9333333333333333333333333301, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 93w01.
Programs
-
Magma
[n: n in [1..500] | IsPrime((28*10^n-97) div 3)]; // Vincenzo Librandi, Jul 21 2016
-
Mathematica
Select[Range[0, 100], PrimeQ[(28*10^#-97)/3 && # > 0] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
-
PARI
is(n)=ispseudoprime((28*10^n-97)/3) \\ Charles R Greathouse IV, Jul 21 2016
Comments