A275237 Smallest number k > 0 such that sigma(x) and sigma(x)+2 are both prime, where x = (6k+1)^(6n+4), or -1 if no such k exists.
1, 348, 436, 6018, 5880, -1, 4612, 26921, 16166, 81111, -1, 426260, -1, 181876, 227180, -1, 12836, 287388, 2317, -1, -1, 1128403, 668927, -1, 5295, -1, -1, 490118, 2217967, 1607226, -1, 1212183, 100728, -1, -1, -1, -1, 1191713, 43475567, 165965, -1, 2915491, 361885, 4159496, 3398061, -1, 88930, -1, 10451327, -1, -1
Offset: 0
Examples
For n = 0, x = 7^4 is the smallest fourth power such that sigma(x) and sigma(x)+2 are both prime, thus a(0) = 1.
Formula
a(A059324(n)) = -1. - Altug Alkan, Aug 13 2016
Extensions
a(31)-a(37) from Chai Wah Wu, Aug 01 2016
a(38)-a(50) from Chai Wah Wu, Aug 18 2016
Comments