A275254 The bi-unitary gcd-sum function.
1, 3, 5, 7, 9, 14, 13, 15, 17, 25, 21, 30, 25, 36, 43, 31, 33, 47, 37, 57, 61, 58, 45, 64, 49, 69, 53, 82, 57, 108, 61, 63, 99, 91, 113, 99, 73, 102, 117, 117, 81, 163, 85, 132, 141, 124, 93, 130, 97, 135, 155, 157, 105, 146, 181
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009), Article 09.5.2, function P**(n).
Programs
-
Maple
Pstarstar := proc(n) add(A165430(k,n),k=1..n) ; end proc:
-
Mathematica
phi[x_, n_] := Sum[Boole[GCD[k, n] == 1], {k, 1, x}]; uphi[1]=1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); a[n_] := DivisorSum[n, uphi[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 09 2019 *)
Formula
a(n) = Sum_{k=1..n} A165430(n,k).
Sum_{k=1..n} a(k) = c * n^2 * log(n) / 2 + O(n^2), where c = Product_{p prime} (1 - (3*p-1)/(p^2*(p+1))) = zeta(2) * Product_{p prime} (1 - (2*p-1)^2/p^4) = A013661 * A256392 = 0.35823163000196141456... . - Amiram Eldar, Dec 22 2023
Comments