cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275254 The bi-unitary gcd-sum function.

Original entry on oeis.org

1, 3, 5, 7, 9, 14, 13, 15, 17, 25, 21, 30, 25, 36, 43, 31, 33, 47, 37, 57, 61, 58, 45, 64, 49, 69, 53, 82, 57, 108, 61, 63, 99, 91, 113, 99, 73, 102, 117, 117, 81, 163, 85, 132, 141, 124, 93, 130, 97, 135, 155, 157, 105, 146, 181
Offset: 1

Views

Author

R. J. Mathar, Jul 21 2016

Keywords

Comments

Row sums of A165430.

Crossrefs

Programs

  • Maple
    Pstarstar := proc(n)
        add(A165430(k,n),k=1..n) ;
    end proc:
  • Mathematica
    phi[x_, n_] := Sum[Boole[GCD[k, n] == 1], {k, 1, x}]; uphi[1]=1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); a[n_] := DivisorSum[n, uphi[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 09 2019 *)

Formula

a(n) = Sum_{k=1..n} A165430(n,k).
Sum_{k=1..n} a(k) = c * n^2 * log(n) / 2 + O(n^2), where c = Product_{p prime} (1 - (3*p-1)/(p^2*(p+1))) = zeta(2) * Product_{p prime} (1 - (2*p-1)^2/p^4) = A013661 * A256392 = 0.35823163000196141456... . - Amiram Eldar, Dec 22 2023