cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275283 Number of set partitions of [2n] with symmetric block size list of length n.

Original entry on oeis.org

1, 1, 3, 19, 171, 2066, 31346, 559987, 11954993, 282835456, 7785919355, 229359684137, 7731656573016, 272633076900991, 10876116332074739, 446659746000614675, 20580725671071449149, 964732749192326683508, 50418595763262446272127, 2656265906893413392905767
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2016

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: 12.
a(2) = 3: 12|34, 13|24, 14|23.
a(3) = 19: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 1|2345|6, 1|2346|5, 15|23|46, 1|2356|4, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 1|2456|3, 16|24|35, 15|26|34, 16|25|34.
		

Crossrefs

Bisection (even part) of A305197.
Cf. A275281.

Programs

  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n>s, Binomial[n-1, n-s-1]*x, 1] + Sum[Binomial[n-1, j-1]*b[n-j, s+j]*Binomial[s+j-1, j-1], {j, 1, (n-s)/2}]*x^2];
    T[n_] := T[n] = Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    a[n_] := T[2n][[n+1]];
    a /@ Range[0, 20] (* Jean-François Alcover, Aug 21 2021,after Alois P. Heinz in A275281 *)

Formula

a(n) = A275281(2n,n).
a(n) ~ c * n^(n-1/2) * d^n / (exp(n) * 2^(n-3/2)), where d = 5.99720652866734051428..., c = 0.331364442872654716... if n is even and c = 0.32118925729236323... if n is odd. - Vaclav Kotesovec, Aug 08 2016