A275284 Numbers k such that (29*10^k - 41)/3 is prime.
1, 2, 5, 7, 13, 16, 55, 61, 65, 98, 134, 296, 354, 527, 901, 1206, 1916, 2899, 3725, 4709, 7529, 8942, 12050, 12880, 15516, 25976, 62030, 111020, 195648, 197941
Offset: 1
Examples
5 is in this sequence because (29*10^5 - 41)/3 = 966653 is prime. Initial terms and associated primes: a(1) = 1, 83; a(2) = 2, 953; a(3) = 5, 966653; a(4) = 7, 96666653; a(5) = 13, 96666666666653, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 96w53.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(29*10^# - 41)/3] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((29*10^n-41)/3), print1(n, ", "))); \\ Altug Alkan, Jul 21 2016
Extensions
a(28)-a(30) from Tyler Busby, Mar 20 2024
Comments